
Selected Answers to HW 5

HW 5

Question 2

First compute |
(

1 + z
n

)n
| =

(
|1 + z

n |
)n

=
(

(1 + x
n )2 + ( yn )2

)n/2
.
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Now the argument: Arg(1+ z
n ) = Arctan y/n

1+x/n , thus by De Moivre, Arg
(

1+ z
n

)n
= n ·Arctan y/n

1+x/n .

Thus limn→∞Arg
(

1 + z
n

)n
= limn→∞ n ·Arctan y/n

1+x/n = y.

(Note: arctan is defined up to π, but for n � 1: 1 + z
n ∼ 1, thus we choose the principal branch,

|Arctan| < π/2)

Question 3

Item a

Our goal is to construct δ(t) so that γ(t) = eδ(t). Intuitively we would like to say that δ(t) = ”logγ(t)”.

However, we have no guarantee that any branch of log is defined on all γ. Instead we define logγ(t)

locally, and stitch the pieces. Details follow:

Note that since 0 /∈ γ, and γ is compact (closed and bounded), the continuous function t 7→ |γ(t)| has

a minimum. Denote this minimum ε. By the hint, there is a partition of the interval 0 = t1 < ... < tn = 1,

so that γ([ti, ti+1]) is in a some ball of radius ε/2 around γ(ti). Since this ball doesn’t contain 0, it also

doesn’t contain any path that circles 0 (the ball is convex, hence if it contained a path that circles 0 it must

have contained 0 itself). Hence locally for every i, there exists some branch of log, fi : Ballε/2(ti)→ C.

Now we define δ(t) inductively on each interval:

1. On [t0, t1] we define δ(t) = f0(γ(t)).

2. Given that we defined δ(t) on [t0, tj ], we need to define it on [tj , tj+1]. The branches fj , fj+1 are

both defined on the point γ(tj). We saw in class that if they are both defined on some shared point,

then fj+1(γ(tj))− fj(γ(tj)) = 2πikj for some integer kj . We define δ(t) = fj+1(γ(t))− 2πikj (and

note that by deducting 2πikj we still get a branch of log).

By construction our function is continuous, and since on every point δ(t) = fi(γ(t)) + 2πikj for some kj

and branch fj of log, then γ(t) = eδ(t).

Item b

Since γ(0) = γ(1) then eδ(0) = eδ(1). By what we saw in class, this means that δ(1) − δ(0) is 2πik for

some integer k ∈ Z.

Equality doesn’t necessarily hold (i.e. the path is not always closed). Even in the case that γ(t) =

e2πit, then we can define δ(t) = 2πit and get δ(0) = 0 and δ(1) = 2π.
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Item c

Since eδ(t) = eδ̃(t), then the difference δ̃(t) − δ(t) = 2πik for some integer k. In addition δ̃(t) − δ(t) is

continuous, and since this is a continuous function with integral values (up to scaling by 2πi), then it

must be a constant.

Note that this is the most we can say since if δ(t) + 2πik is also a path that has eδ(t)+2πik = γ(t) for

every integer k.

Question 4

Item a

We saw in class that ∣∣∣∣∫
γ

f(z)dz

∣∣∣∣ ≤ max
z∈γ
{|f(z)|}length(γ).

Indeed in this case length(γR,Φ1,Φ2) ≤ 2πR. Thus if max|z|=R{|f(z)|} < C
R1+ε then∣∣∣∣∣

∫
γR,Φ1,Φ2

f(z)dz

∣∣∣∣∣ ≤ 2πRC

R1+ε
−−−−→
R→∞

0.

Item b

No. For example take p(z) = 1 and q(z) = z. The integral of∫
γR,Φ1,Φ2

dz

z
=

∫ Φ2

Φ1

Rieitdt

Reit
= Φ2 − Φ1.

In particular it doesn’t go to 0.

Item c

To prove that limR→∞
∫
R,Φ1,Φ2

eiazf(z)dz = 0, it is enough to prove that
∫
R,Φ1,Φ2

|eiaz||dz| is bounded

since ∣∣∣∣∫
R,Φ1,Φ2

eiazf(z)dz

∣∣∣∣ ≤ ∫
R,Φ1,Φ2

|eiaz||f(z)||dz| ≤ max
R,Φ1,Φ2

|f(z)|
∫
R,Φ1,Φ2

|eiaz||dz|.

Consider the parametrization γ : [Φ1,Φ2]→ C, γ(t) = Reit.∫
R,Φ1,Φ2

|eiaz||dz| =
∫ Φ2

Φ1

|eiaRe
it

||Rieit|dt = R

∫ Φ2

Φ1

|eiaRe
it

|dt.

The norm of eiaRe
it

is eRe(iaRe
it) = e−aRsin(t).

• First solution: In the range [0, π] the sine function is concave (i.e. -sin(x) is convex), thus the

line between (0, sin(0)) and π, sin(π) in under the graph of sin(x) (prove this...). Thus sin(t) ≥ 2t
π .

Thus e−aRsin(t) ≤ e− 2aRt
π . And

R

∫ Φ2

Φ1

|eiaRe
it

|dt ≤ R
∫ Φ2

Φ1

e−
2aRt
π dt =

π

2a
e−

2aRΦ2
π − e−

2aRΦ1
π ≤ π

2a
.

• Second solution:

1. If Φ1 > 0 then sin(t) ≥ sin(Φ1) > 0 thus e−aRsin(t) ≤ e−asin(Φ1)R in all the domain, and thus

R

∫ Φ2

Φ1

|eiaRe
it

|dt ≤ Re−aRsin(Φ1)(Φ2 − Φ1) −−−−→
R→∞

0
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2. Otherwise Φ1 = 0. We now that limx→0
sin(x)
x = 1, thus there is a small (real) half-open

interval that contains 0 where sin(t) ≥ t
2 . Denote this interval [0, `). Thus we can write

R

∫ Φ2

0

|eiaRe
it

|dt = R

∫ `

0

|eiaRe
it

|dt+R

∫ Φ2

`

|eiaRe
it

|dt.

The part R
∫ Φ2

`
|eiaReit |dt goes to 0 as in the first case. The part

R

∫ `

0

|eiaRe
it

|dt ≤ R
∫ `

0

e−aR
t
2 dt = R

1

2aR
(1− e−aR `

2 ),

which is at most 1
2a .

Question 5

Item b

Recall that Green’s Theorem from calculus gives us that∫
∂U

P (x, y)dx+Q(x, y)dy =

∫∫
U

(
∂Q

dx
− ∂P

dy

)
dxdy.

In particular, for (P,Q) = (−y, x) then∫
∂U

P (x, y)dx+Q(x, y)dy = 2

∫∫
U

1dxdy = 2area(U).

Consider the integral
∫
∂U

z̄dz. Note that for any f(z) = u(z) + iv(z), the complex integral of ¯f(z) is:∫
¯f(z)dz =

∫
(udx+ vdy + i

∫
−vdx+ udy.

In particular for f(z) = z = Re(z) + iIm(z),∫
∂U

z̄ =

∫
xdx+ ydy + i

∫
ydx− xdy = 0 + 2iarea(U).

Question 6

Let F1, F2 be primitive functions of a function f . Then the derivative of the function g = F1(z)− F2(z)

is g′(z) = f(z)− f(z) = 0. In particular this means that the partial derivatives of g as a function from

R2 to itself are zero for all z ∈ U . We saw in calculus that this means g is constant.
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