Selected Answers to HW 5

HW 5

Question 2

First compute $\left|\left(1+\frac{z}{n}\right)^{n}\right|=\left(\left|1+\frac{z}{n}\right|\right)^{n}=\left(\left(1+\frac{x}{n}\right)^{2}+\left(\frac{y}{n}\right)^{2}\right)^{n / 2}$.
Thus: $\lim _{n \rightarrow \infty}\left|\left(1+\frac{z}{n}\right)^{n}\right|=\lim _{n \rightarrow \infty}\left(1+\frac{2 x}{n}+\frac{x^{2}+y^{2}}{n^{2}}\right)^{n / 2}=e^{x}$.
Now the argument: $\operatorname{Arg}\left(1+\frac{z}{n}\right)=\operatorname{Arctan} \frac{y / n}{1+x / n}$, thus by De Moivre, $\operatorname{Arg}\left(1+\frac{z}{n}\right)^{n}=n \cdot \operatorname{Arctan} \frac{y / n}{1+x / n}$.
Thus $\lim _{n \rightarrow \infty} \operatorname{Arg}\left(1+\frac{z}{n}\right)^{n}=\lim _{n \rightarrow \infty} n \cdot \operatorname{Arctan} \frac{y / n}{1+x / n}=y$.
(Note: \arctan is defined up to π, but for $n \gg 1$: $1+\frac{z}{n} \sim 1$, thus we choose the principal branch, \mid Arctan $\mid<\pi / 2$)

Question 3

Item a

Our goal is to construct $\delta(t)$ so that $\gamma(t)=e^{\delta(t)}$. Intuitively we would like to say that $\delta(t)=" \log \gamma(t)$ ". However, we have no guarantee that any branch of \log is defined on all γ. Instead we define $\log \gamma(t)$ locally, and stitch the pieces. Details follow:

Note that since $0 \notin \gamma$, and γ is compact (closed and bounded), the continuous function $t \mapsto|\gamma(t)|$ has a minimum. Denote this minimum ε. By the hint, there is a partition of the interval $0=t_{1}<\ldots<t_{n}=1$, so that $\gamma\left(\left[t_{i}, t_{i+1}\right]\right)$ is in a some ball of radius $\varepsilon / 2$ around $\gamma\left(t_{i}\right)$. Since this ball doesn't contain 0 , it also doesn't contain any path that circles 0 (the ball is convex, hence if it contained a path that circles 0 it must have contained 0 itself). Hence locally for every i, there exists some branch of $\log , f_{i}: \operatorname{Ball}_{\varepsilon / 2}\left(t_{i}\right) \rightarrow \mathbb{C}$. Now we define $\delta(t)$ inductively on each interval:

1. On $\left[t_{0}, t_{1}\right]$ we define $\delta(t)=f_{0}(\gamma(t))$.
2. Given that we defined $\delta(t)$ on $\left[t_{0}, t_{j}\right]$, we need to define it on $\left[t_{j}, t_{j+1}\right]$. The branches f_{j}, f_{j+1} are both defined on the point $\gamma\left(t_{j}\right)$. We saw in class that if they are both defined on some shared point, then $f_{j+1}\left(\gamma\left(t_{j}\right)\right)-f_{j}\left(\gamma\left(t_{j}\right)\right)=2 \pi i k_{j}$ for some integer k_{j}. We define $\delta(t)=f_{j+1}(\gamma(t))-2 \pi i k_{j}$ (and note that by deducting $2 \pi i k_{j}$ we still get a branch of $\left.\log \right)$.

By construction our function is continuous, and since on every point $\delta(t)=f_{i}(\gamma(t))+2 \pi i k_{j}$ for some k_{j} and branch f_{j} of \log, then $\gamma(t)=e^{\delta(t)}$.

Item b

Since $\gamma(0)=\gamma(1)$ then $e^{\delta(0)}=e^{\delta(1)}$. By what we saw in class, this means that $\delta(1)-\delta(0)$ is $2 \pi i k$ for some integer $k \in \mathbb{Z}$.

Equality doesn't necessarily hold (i.e. the path is not always closed). Even in the case that $\gamma(t)=$ $e^{2 \pi i t}$, then we can define $\delta(t)=2 \pi i t$ and get $\delta(0)=0$ and $\delta(1)=2 \pi$.

Item c

Since $e^{\delta(t)}=e^{\tilde{\delta}(t)}$, then the difference $\tilde{\delta}(t)-\delta(t)=2 \pi i k$ for some integer k. In addition $\tilde{\delta}(t)-\delta(t)$ is continuous, and since this is a continuous function with integral values (up to scaling by $2 \pi i$), then it must be a constant.

Note that this is the most we can say since if $\delta(t)+2 \pi i k$ is also a path that has $e^{\delta(t)+2 \pi i k}=\gamma(t)$ for every integer k.

Question 4

Item a

We saw in class that

$$
\left|\int_{\gamma} f(z) d z\right| \leq \max _{z \in \gamma}\{|f(z)|\} \operatorname{length}(\gamma)
$$

Indeed in this case length $\left(\gamma_{R, \Phi_{1}, \Phi_{2}}\right) \leq 2 \pi R$. Thus if $\max _{|z|=R}\{|f(z)|\}<\frac{C}{R^{1+\varepsilon}}$ then

$$
\left|\int_{\gamma_{R, \Phi_{1}, \Phi_{2}}} f(z) d z\right| \leq \frac{2 \pi R C}{R^{1+\varepsilon}} \underset{R \rightarrow \infty}{ } 0
$$

Item b

No. For example take $p(z)=1$ and $q(z)=z$. The integral of

$$
\int_{\gamma_{R, \Phi_{1}, \Phi_{2}}} \frac{d z}{z}=\int_{\Phi_{1}}^{\Phi_{2}} \frac{R i e^{i t} d t}{R e^{i t}}=\Phi_{2}-\Phi_{1}
$$

In particular it doesn't go to 0 .

Item c

To prove that $\lim _{R \rightarrow \infty} \int_{R, \Phi_{1}, \Phi_{2}} e^{i a z} f(z) d z=0$, it is enough to prove that $\int_{R, \Phi_{1}, \Phi_{2}}\left|e^{i a z}\right||d z|$ is bounded since

$$
\left|\int_{R, \Phi_{1}, \Phi_{2}} e^{i a z} f(z) d z\right| \leq \int_{R, \Phi_{1}, \Phi_{2}}\left|e^{i a z}\right||f(z)||d z| \leq \max _{R, \Phi_{1}, \Phi_{2}}|f(z)| \int_{R, \Phi_{1}, \Phi_{2}}\left|e^{i a z}\right||d z|
$$

Consider the parametrization $\gamma:\left[\Phi_{1}, \Phi_{2}\right] \rightarrow \mathbb{C}, \gamma(t)=R e^{i t}$.

$$
\int_{R, \Phi_{1}, \Phi_{2}}\left|e^{i a z}\right||d z|=\int_{\Phi_{1}}^{\Phi_{2}}\left|e^{i a R e^{i t}} \| R i e^{i t}\right| d t=R \int_{\Phi_{1}}^{\Phi_{2}}\left|e^{i a R e^{i t}}\right| d t
$$

The norm of $e^{i a R e^{i t}}$ is $e^{\operatorname{Re}\left(i a R e^{i t}\right)}=e^{-a R \sin (t)}$.

- First solution: In the range $[0, \pi]$ the sine function is concave (i.e. $-\sin (x)$ is convex), thus the line between $(0, \sin (0))$ and $\pi, \sin (\pi)$ in under the graph of $\sin (x)$ (prove this...). Thus $\sin (t) \geq \frac{2 t}{\pi}$. Thus $e^{-a R \sin (t)} \leq e^{-\frac{2 a R t}{\pi}}$. And

$$
R \int_{\Phi_{1}}^{\Phi_{2}}\left|e^{i a R e^{i t}}\right| d t \leq R \int_{\Phi_{1}}^{\Phi_{2}} e^{-\frac{2 a R t}{\pi}} d t=\frac{\pi}{2 a} e^{-\frac{2 a R \Phi_{2}}{\pi}}-e^{-\frac{2 a R \Phi_{1}}{\pi}} \leq \frac{\pi}{2 a}
$$

- Second solution:

1. If $\Phi_{1}>0$ then $\sin (t) \geq \sin \left(\Phi_{1}\right)>0$ thus $e^{-a R \sin (t)} \leq e^{-a \sin \left(\Phi_{1}\right) R}$ in all the domain, and thus

$$
R \int_{\Phi_{1}}^{\Phi_{2}}\left|e^{i a R e^{i t}}\right| d t \leq R e^{-a R \sin (\Phi 1)}\left(\Phi_{2}-\Phi_{1}\right) \xrightarrow[R \rightarrow \infty]{ } 0
$$

2. Otherwise $\Phi_{1}=0$. We now that $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$, thus there is a small (real) half-open interval that contains 0 where $\sin (t) \geq \frac{t}{2}$. Denote this interval $[0, \ell)$. Thus we can write

$$
R \int_{0}^{\Phi_{2}}\left|e^{i a R e^{i t}}\right| d t=R \int_{0}^{\ell}\left|e^{i a R e^{i t}}\right| d t+R \int_{\ell}^{\Phi_{2}}\left|e^{i a R e^{i t}}\right| d t
$$

The part $R \int_{\ell}^{\Phi_{2}}\left|e^{i a R e^{i t}}\right| d t$ goes to 0 as in the first case. The part

$$
R \int_{0}^{\ell}\left|e^{i a R e^{i t}}\right| d t \leq R \int_{0}^{\ell} e^{-a R \frac{t}{2}} d t=R \frac{1}{2 a R}\left(1-e^{-a R \frac{\ell}{2}}\right)
$$

which is at most $\frac{1}{2 a}$.

Question 5

Item b

Recall that Green's Theorem from calculus gives us that

$$
\int_{\partial U} P(x, y) d x+Q(x, y) d y=\iint_{U}\left(\frac{\partial Q}{d x}-\frac{\partial P}{d y}\right) d x d y
$$

In particular, for $(P, Q)=(-y, x)$ then

$$
\int_{\partial U} P(x, y) d x+Q(x, y) d y=2 \iint_{U} 1 d x d y=2 \operatorname{area}(U)
$$

Consider the integral $\int_{\partial U} \bar{z} d z$. Note that for any $f(z)=u(z)+i v(z)$, the complex integral of $f \overline{(z)}$ is:

$$
\int f \overline{(z)} d z=\int\left(u d x+v d y+i \int-v d x+u d y\right.
$$

In particular for $f(z)=z=\operatorname{Re}(z)+i \operatorname{Im}(z)$,

$$
\int_{\partial U} \bar{z}=\int x d x+y d y+i \int y d x-x d y=0+2 \operatorname{iarea}(U)
$$

Question 6

Let F_{1}, F_{2} be primitive functions of a function f. Then the derivative of the function $g=F_{1}(z)-F_{2}(z)$ is $g^{\prime}(z)=f(z)-f(z)=0$. In particular this means that the partial derivatives of g as a function from \mathbb{R}^{2} to itself are zero for all $z \in U$. We saw in calculus that this means g is constant.

