Selected Answers to HW 6

Question 1

Item b

- $f(z)=\frac{\cos (z)}{z}$ this function has a point where it is not contiuous (i.e. $z=0$). Thus we cannot expect it to be analytic in all \mathbb{C}.

1. In $\mathbb{C} \backslash\{0\}$ and $\{|\operatorname{Im}(z)|<1\}$ we have $\gamma=\left\{z:|z|=\frac{1}{2}\right\}$ that circles 0 and by Cauchy's integral formula

$$
\int_{\gamma} \frac{\cos (z)}{z} d z=2 \pi i \cos (0)=2 \pi i \neq 0
$$

Thus by a theorem we saw in class, this function cannot have a primitive function in these domains.
2. On all other domains $\left(\{|\operatorname{Im}(z)|>11\}\right.$, Ball $_{\frac{1}{2}}\left(e^{\frac{2 \pi i}{3}}\right)$ and $\left.\mathbb{C} \backslash \mathbb{R}_{\leq 0}\right)$ are simply connected, and $\frac{\cos (z)}{z}$ is analytic in them, hence by a theorem we studied in class there exists a primitive function. A formula to a primitive function is given by

$$
F(z)=\int_{\gamma_{w_{0}, z}} f(u) d u
$$

for some fixed w_{0} in the domain, and any choice of path γ from w_{0} to z contained in the domain.

- $f(z)=\frac{\sin (z)}{z}$: As $\sin (0)=0$, the point 0 has order 1 for $\sin (z)$ and thus $\frac{\sin (z)}{z}$ is analytic in all \mathbb{C}. As this domain is simply connected, it has a primitive function as we saw in class.
- $f(z)=\frac{e^{z}-1}{z}$ is the same as above.

Item d

Let $f: U \rightarrow \mathbb{C}$ be as in the question. We claim that there is an open set W so that $\gamma \subset W \subset U$ where $|f(z)-1|<1$.

Indeed, suppose there is not. This means that for any open set containing γ, there is a point where $|f(z)-1| \geq 1$. In particular, as γ is compact inside U, the open set

$$
W_{n}=U \bigcup_{x \in \gamma} \operatorname{Ball}_{\frac{1}{n}}(x)
$$

contains a point $w_{n} \in W_{n}$ so that $\left|f\left(w_{n}\right)-1\right| \geq 1$. From Wierstrass's theorem, w_{n} is bounded hence it has a subsequence that converges to w_{0} and from the way we constructed w_{n} then $w_{0} \in \gamma$. From contiuity this means that $\left|f\left(w_{0}\right)-1\right| \geq 1$ which is a contradiction.

Thus without loss of generality we may assume that $|f(z)-1|<1$ in all the domain of f (by looking at its restriction to W.

Now consider the function $g(z)=\log (f(z))$. Since $f(z) \notin(-\infty, 0]$ (as for all $w \in(-\infty, 0]$ we know that $|w-1| \geq 1), g(z)$ is well defined in the domain of f .
$g(z)$ is analytic and its derivative is $g(z)=\frac{f^{\prime}(z)}{f(z)}$. Thus from the fundamental theorem of calculus for the complex numbers

$$
\oint_{\gamma} g^{\prime}(z) d z=\oint_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0 .
$$

Question 2

Item c

1. Notice that

$$
\frac{1}{z^{2}+1}=\frac{1}{2}\left(\frac{1}{i z+1}+\frac{1}{-i z+1}\right)
$$

thus we define the function $F(z)=\frac{1}{2 i}(\log (i z+1)-\log (-i z+1))$. Note that this function is defined in the domain $\mathcal{D}, F(0)=0$ and its derivative is $\frac{1}{z^{2}+1}$.
Note: Since our domain D is simply connected and f is analytic, we can deduce the primitive function without calculating its formula explicitly. The reason we calculated it is for the next item.
2. As we know that $\tan (0)=F(0)=0$, it is enough to show that $F(\tan (z))-z$ is constant, which is equivalent of showing that its derivative is 0 , or that

$$
F^{\prime}(\tan (z))=1
$$

Indeed,

$$
F^{\prime}(\tan (z))=\frac{1}{1+\tan ^{2}(z)} \tan ^{\prime}(z)=\frac{1}{\cos ^{2}(z)\left(1+\tan ^{2}(z)\right)}=\frac{1}{\cos ^{2}(z)+\sin ^{2}(z)}=1
$$

Question 3

Item a

We will prove for $n \geq 1$ that $\eta\left(\gamma_{n}, z_{0}\right)=n$. For negative n the proof is similar (as it is the same as for positive n except that the path is in the opposite direction). Indeed, notice that the path $\gamma_{n}=z_{0}+e^{2 \pi i t n}$ is a concatenation of the path $z_{0}+e^{2 \pi i t}$ to itself n times. Thus by item f below

$$
\eta\left(\gamma_{n}, z_{0}\right)=n \eta\left(\gamma_{1}, z_{0}\right)
$$

By direct calculation we did in class $\eta\left(\gamma_{1}, z_{0}\right)=\int_{\left|z-z_{0}\right|=R} \frac{d z}{z-z_{0}}=1$ and we're done.

Item e

recall that in exercise 5 we showed that we can write any path $\gamma(t)$ as $\gamma(t)=z_{0}+e^{\delta}(t)$. Thus

$$
\eta\left(\gamma, z_{0}\right)=\frac{1}{2 \pi i} \int_{\gamma}(t) \frac{d z}{z-z_{0}}=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \frac{\delta^{\prime}(t) e^{\delta(t)} d t}{e^{\delta(t)}}=\frac{1}{2 \pi i} \int_{0}^{2 \pi} \delta^{\prime}(t) d t=\frac{1}{2 \pi i}(\delta(2 \pi)-\delta(0))
$$

We also saw in the last exercise that $\delta(2 \pi)-\delta(0)=2 \pi i k$ for some integer k. Thus the value is always an integer.

Item f

By linearity of integration,

$$
\eta\left(\gamma_{1} * \gamma_{2}, z_{0}\right)=\int_{\gamma_{1} * \gamma_{2}} \frac{1}{z-z_{0}} d z=\int_{\rho_{1}} \frac{1}{z-z_{0}} d z+\int_{\rho_{2}} \frac{1}{z-z_{0}} d z
$$

Where $\rho_{1}:\left[0, \frac{1}{2}\right] \rightarrow \mathbb{C}$ is $\rho_{1}(t)=\gamma_{1}(2 t)$ and $\rho_{2}:\left[\frac{1}{2}, 1\right] \rightarrow \mathbb{C}$ is $\rho_{2}(t)=\gamma_{2}(2 t-1)$. Hence

$$
\int_{\rho_{1}} \frac{1}{z-z_{0}} d z=\int_{0}^{\frac{1}{2}} \frac{\rho_{1}^{\prime}(2 t)}{\rho_{1}(t)-z_{0}} d t=\int_{0}^{\frac{1}{2}} \frac{2 \gamma_{1}^{\prime}(2 t)}{\gamma_{1}(2 t)-z_{0}} d t
$$

By a change of variables $t \mapsto 2 u$ we get

$$
=\int_{0}^{1} \frac{\gamma_{1}^{\prime}(u)}{\gamma_{1}(u)-z_{0}} d u=\int_{\gamma_{1}} \frac{1}{z-z_{0}} d z=\eta\left(\gamma_{1}, z_{0}\right) .
$$

Similarly to the second part. Thus

$$
\eta\left(\gamma_{1} * \gamma_{2}, z_{0}\right)=\eta\left(\gamma_{1}, z_{0}\right)+\eta\left(\gamma_{2}, z_{0}\right)
$$

