
HOMEWORK SHEETS 7: SOLUTIONS

INTRODUCTION TO COMPLEX ANALYSIS FOR ELECTRIC ENGINEERING

Question 1.

a) See question 3 in Tirgul 9 for a solution; Notice that if f is analytic then |f |2

is R2−differentiable, however e2|z| is not and therefore such an f does not exist.

b) Let zn = rneiθn , with θn ∈ [−α, α] and α ∈ (0, π/2). If
∑∞

n=0 |zn| converges,
then

∑∞
n=0 zn converges (see question 2.a(ii) in exercise 4).

On the other hand, suppose that
∑∞

n=0 zn converges, thus
∑∞

n=0 rn cos(θn) con-
verges. However, for every n ≥ 0 we have rn cos(θn) ≥ rn cos(α) > 0, since α < π/2,
so we get that

∑∞
n=0 rn cos(α) converges, i.e., that

∑∞
n=0 rn =

∑∞
n=0 |zn| converges.

c) Yes. Similarly, if
∑∞

n=0 zn converges, then
∑∞

n=0 rn sin(θn) converges, but
rn sin(θn) ≥ rn sin(α) > 0 implies that

∑∞
n=0 rn converges.

d) As 0 ≤ r < 1, we have

∞∑

n=0

rn cos(nθ)+ i

∞∑

n=0

rn sin(nθ) =
∞∑

n=0

rneinθ =
1

1 − reiθ
=

1 − re−iθ

(1 − reiθ)(1 − re−iθ)

=
1 − r cos(θ) − ir sin(θ)

1 − 2r cos(θ) + r2

and therefore
∞∑

n=0

rn cos(nθ) = Re

(
1 − r cos(θ) + ir sin(θ)

1 − 2r cos(θ) + r2

)

=
1 − r cos(θ)

1 − 2r cos(θ) + r2

and
∞∑

n=0

rn sin(nθ) = Im

(
1 − r cos(θ) + ir sin(θ)

1 − 2r cos(θ) + r2

)

=
r sin(θ)

1 − 2r cos(θ) + r2
.

Question 2.

a) We proved in class that the power series converges uniformly on any compact
set in BallR(0). In particular it converges uniformly on γ (those who don’t remem-
ber this can recall that any compact set K ⊂ Ballε(0) has that k = maxz∈K |z| < R,
thus

∑∞
n=0 |anzn| ≤ C

∑∞
n=0

kn

Rn for some constant C).
If fn → f converges uniformly, then by the integral triangle inequality

∣
∣
∣
∣

∫

γ

(fn(z) − f(z))dz

∣
∣
∣
∣ ≤ max

z∈γ
|fn(z) − f(z)| ∙ Length(γ).

Thus the integrals converge to each other as well.
1
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Hence the integral of the sequence
{∑N

n=0 anzn
}

N
converges to the integral of

f(z) on γ, and this integral also converges to
∑∞

n=0 an

∫
γ

zndz. In particular, this
series of complex numbers converges.

b) This exercise shows an interesting relation between Fourier analysis and complex
numbers.

Define the following function g(θ) = f(reiθ). This is a continuous periodic
function g : [−π, π] → C. Notice that by power series of f , g(θ) = f(reiθ) =∑∞

n=0 anrneinθ. Thus by the uniqueness theorem of Fourier analysis, the Fourier
coefficients of g(z) are

ĝ(n) =

{
anrn n ≥ 0

0 n < 0
.

In particular, by Parseval’s identity,
∫ 2π

0

|f(reiθ)|2dθ =
∫ 2π

0

|g(θ)|2dθ = 2π

∞∑

n=0

|an|
2r2n.

Remark 0.1. One can ask, how come we have no negative Fourier coefficients -
we will see the negative coefficients when we learn about Laurent series.

c) Note that if h, g : D → C are defined by a power series in the domain
g(z) =

∑∞
n=0 anzn and h(z) =

∑∞
n=0 bnzn then

(0.1) g(z)h(z) =
∞∑

n=0




n∑

j=0

ajbn−j



 zn,

which also converges in all the domain. To show this just note that the n’th
derivative of g(z)h(z) at 0 is

n∑

j=0

n!
k!(n − j)!

f (j)(0)g(n−j)(0) = n!
n∑

j=0

ajbn−j

by Liebnitz’s formula. Moreover, we saw that if g(z)h(z) is defined in a ball,
then its power series converges in that ball. Thus if we show that g(z) = 1

1−z and
h(z) =

∫
γz

f(z)dz are both analytic in Ball1(0), then their product F (z) = g(z)h(z)
is analytic in that ball. If we show that

g(z) =
∞∑

n=1

an−1

n
zn

and use the fact that

h(z) =
∞∑

n=0

zn

then by formula (0.1) we get that

F (z) = h(z)g(z) =
∞∑

n=0




n∑

j=0

aj

j + 1



 zn+1.
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Indeed we saw in class that h(z) is analytic, and that g(z) is also analytic (and
it is in fact a primitive function to f(z)). By g(z) being a primitive function to
f(z) so that g(0) = 0 we can deduce that

g(z) =
∞∑

n=1

an−1

n
zn

and we are done.

d) Let K be any compact set that doesn’t contain any natural number. Denote by
M = max |z| : z ∈ K (K is bounded hence M exists). Since K is bounded, there ex-
ists some natural number N so that N > M . Denote by m = min |z − n| : z ∈ K,n < N
and note that m > 0 (since this is a minimum between a finite number of n ∈ N
and since K doesn’t contain any natural number)1. Notice that

∞∑

n=1

∣
∣
∣
∣

1
z − n

+
1
n

∣
∣
∣
∣ =

∞∑

n=1

|z|
|n(z − n)|

≤ |M |
N∑

n=1

1
nm

+
∞∑

N+1

1
n(M − n)

thus by Wierstrass’s M -convergence test, this series of functions converges abso-
lutely and uniformly in K. Next we calculate

f(z + 1) − f(z) =
∞∑

n=1

1
z + 1 − n

−
1

z − n
=

∞∑

n=1

1
z − (n − 1)

−
1

z − n
.

This is a telescopic sequence that is equal to 1
z+1 . Finally we calculate the derivative

of f(z):

(1) First solution: Consider the series of derivatives g(z) =
∑∞

n=1
−1

(z−n)2 .
This series also converges absolutely and uniformly in K (by the same
reasoning as above). By a theorem in calculus that we learned, if f(z) =∑∞

n=1 fn(z) and g(z) =
∑∞

n=1 f ′
n(z) converge uniformly, then f ′(z) = g(z)

(and in particular has a derivative). We proved this theorem in the context
of real numbers but the proof in the context of complex numbers is the
same when we use the complex integral (check at home please).

(2) Second solution: We prove that g(z) =
∑∞

n=1
−1

(z−n)2 is the derivative
directly. In other words we need to show for any z that

lim
h→0

f(z + h) − f(z) − hg(z)
h

= 0

Indeed

f(z + h) − f(z) − hg(z)
h

=
1
h

∞∑

n=1

−h

(z − n)2 + h(z − n)
+

h

(z − n)2
= −h

∞∑

n=1

1
(z − n)2(z − n + h)

.

As the series
∑∞

n=1
1

(z−n)2(z−n+h) converges, then

lim
h→0

f(z + h) − f(z) − hg(z)
h

= 0.

1In fact, one can show that the distance between a compact set and a closed set is always

positive
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Question 3.

a) On the one hand, if f(z) is analytic in a ball of radius R then for every r < R
by the Cauchy formula and the integral triangle inequality

|an| =

∣
∣
∣
∣
∣

∫

|z|=r

f(z)
zn+1

dz

∣
∣
∣
∣
∣
≤

C

rn
,

For some fixed constant C. In particular the radius of convergence is

1

lim supn→∞
n
√

|an|
≥ r,

so it is at least R. On the other hand, the radius of convergence cannot be more
than R: Assume that it was. Then it means that the function converges uniformly
in the closed ball of radius R. Thus the function is defined and continuous in the
closed ball of radius R. Thus

∞∑

n=0

anzn
0 = lim

n→∞
f(zn)

which doesn’t exist. A contradiction.

b) The power series of sin(z) around 0 is

sin(z) =
∞∑

n=0

(−1)n

(2n + 1)!
z2n+1.

The power series of 1
z−π around 0 can be derived from the series of 1

1−z =
∑∞

n=0 zn:

1
z − π

=
−1
π

1
1 − (z/π)

=
∞∑

n=0

−1
πn+1

zn.

The convolution formula for a power series is
(

∞∑

n=0

anzn

)(
∞∑

n=0

bnzn

)

=
∞∑

n=0

n∑

j=0

ajbn−j .

By using the convolution formula we get that

sin(z)
z − π

=

(
(−1)n

(2n + 1)!
z2n+1

)( ∞∑

n=0

−1
πn+1

zn

)

=
∞∑

n=0

cnzn,

where

cn =
bn−1

2 c∑

j=0

(−1)j

(2j + 1)!
1

πn+1−(2j+1)
.

(Note that because the coefficients of sin(z) are zero when n is odd, the sum above
doesn’t really go all the way up to n.) It is hard to calculate the convergence radius
of this series directly, but we saw in class that if a function is analytic in a ball,
then the series converges in the whole ball. The function sin(z)

z−π is analytic in all C,
thus the function’s series converges in all C.
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c) Consider the function tan(i sin(z)). The tangent is defined whenever z 6= π
2 +kπ.

Hence tan(isin(z)) is defined whenever

isin(z) =
eiz − e−iz

2
6=

π

2
+ kπ

or
eiz − e−iz 6= π + 2πk.

Let z0 be so that eiz0 − e−iz0 = π + 2πk. Then limz→z0 tan(isin(z)) = ∞. Thus by
item a of this question the convergence radius must be |z0| for the smallest z0 as
above.

Question 4.

a) From Cauchy’s theorem

f(z0) =
1

2πi

∫

|z−z0|=r

f(z)dz

z − z0

and using the parameterization γ(t) = z0 + reit, t ∈ [0, 2π), we have

f(z0) =
1

2πi

∫ 2π

0

f(z0 + reit)γ′(t)dt

reit
=

1
2π

∫ 2π

0

f(z0 + reit)dt,

while we know that f(z0 + reit) ∈ R for all 0 ≤ t < 2π, therefore f(z0) ∈ R.

b) Let g(z) := f(z)f(−z), as f ∈ O(Ballr(0)) we also have g ∈ O(Ballr(0))
and notice that for every |z| = r the points z and −z are in two different half
planes: one in the upper one and one in the lower one, so in any case |g(z)| ≤ ab..
Thus, apply Cauchy’s theorem

f(0)2 = g(0) =
1

2πi

∫

|z|=r

g(z)dz

z

and hence

|f(0)|2 =
1
2π

∣
∣
∣
∣
∣

∫

|z|=r

g(z)dz

z

∣
∣
∣
∣
∣
≤

1
2π

∫

|z|=r

|g(z)|
r

|dz| ≤
ab

2πr

∫

|z|=r

|dz| = ab,

so |f(0)| ≤
√

ab.

Question 5.

a) To show that f is a polynomial of degree ≤ k, we show that all of its Taylor
coefficients are equal to 0 for n > k. As f ∈ O(C), we can write its Taylor series
expansion around 0, that is

f(z) =
∞∑

n=0

anzn,

where

an =
f (n)(0)

n!
=

1
2πi

∫

|z|=R

f(z)
zn+1

dz, ∀R > 0.

Therefore, we get that

|an| ≤
1
2π

∫

|z|=R

|f(z)|
|z|n+1

|dz| ≤
1

2πRn+1

∫

|z|=R

(a + b|z|k)|dz| =
a + bRk

Rn
.
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If n > k, then letting R → ∞, we obtain |an| = 0. Thus

f(z) =
k∑

n=0

anzn.

b) As τ ∈ C \ R, we have τ = τ1 + iτ2, with τ1, τ2 ∈ R and τ2 6= 0. Then for every
z ∈ C, there exists n ∈ Z such that 0 ≤ Im(z − nτ) < |τ2| and there exists m ∈ Z
such that 0 ≤ Re(z − nτ − m) < 1. Thus, we get that

0 ≤ Re(z − nτ − m) < 1, 0 ≤ Im(z − nτ − m) < |τ2|,

i.e., that z − nτ − m ∈ K := {a + ib : a ∈ [0, 1], b ∈ [0, |τ2|].}
As f ∈ O(C), we know that f is continuous in the compact set K and so f is

bounded in K. On the other hand, for every z ∈ C there exist n,m ∈ Z such that
z−nτ −m ∈ K and together with f(z) = f(z−nτ) = f(z−nτ −m) we get that f
is bounded (by the same bound) in C. Finally, f is entire and bounded, therefore
f is constant, from Liouville’s theorem.

c) Suppose there exists z0 ∈ C and ε > 0 such that |f(z) − z0| > ε for all z ∈ C.
Then the function g(z) := f(z) − z0 also satisfies g ∈ O(C) and g(z) 6= 0 for all
z ∈ C, therefore the function h(z) := 1/g(z) is in O(C) and satisfies |h(z)| < 1/ε
for all z ∈ C. Then Liouville’s theorem implies that h(z) is constant which implies
that g(z) is constant and so is f(z); a contradiction.

Therefore, for every z0 ∈ C and ε > 0, there exists z ∈ C such that |f(z)−z0| ≤ ε,
i.e., the image of f intersect every Ballε(z0) in C and hence f(C) = C.

Question 6.

Recall that if

f(z) =
∞∑

n=0

an(z − z0)
n,

then ordz0(f) := inf{n ≥ 0 : f (n)(z0) 6= 0} = inf{n ≥ 0 : an 6= 0}, as an = f(n)(z0)
n! .

Therefore it is enough to know what is the first non-zero coefficient in the Taylor
series expansion of f around z0, to know of what order z0 is zero of f .

a) We know the Taylor series expansions of Log(1 + z) and sin(z) around 0, so

Log(1 + z5) = z5 −
z10

2
+

z15

3
− . . .

and

sin(z7) = z7 −
z21

6
+ . . . ,

which implies that

f(z) = z2

(

z5 −
z10

2
+

z15

3
− . . .

)

−

(

z7 −
z21

6
+ . . .

)

= −
z12

2
+ . . .

That means that f(z) = z12g(z) where g is analytic and g(0) 6= 0, i.e., ord0(f) = 12.
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b) As f ∈ O(Ballr(0)), one can write f in its Taylor series expansion

f(z) =
∞∑

n=0

anzn, ∀z ∈ Ballr(0)

where an = 1
n!f

(n)(0). However, ord0(f) = ∞ means that f (n)(0) = 0 for all n ≥ 0,
therefore we get that f(z) = 0 for all z ∈ Ballr(0).

c) If ordz0(f) = p, then ap 6= 0 and an = 0 for any n < p; thus

f(z) =
∞∑

n=p

an(z−z0)
n =

∞∑

k=0

ap+k(z−z0)
p+k = (z−z0)

p
∞∑

k=0

ap+k(z−z0)
k = (z−z0)

pg(z),

where g(z) :=
∑∞

k=0 ap+k(z − z0)k satisfies g ∈ O(U) and g(z0) = ap 6= 0.

Question 7.

a) If z0 ∈ Int(S), there exists ε > 0 such that Ballε(0) ⊆ S. Thus,

zn = z0 +
1
n
∈ S

for n large enough and zn → z0 as n → ∞, i.e., z0 is condensation point of S.

b) Let z0 ∈ S and z1 ∈ S. As S is path-connected, there exists a path γ : [0, 1] → S
with γ(0) = z0 and γ(1) = z1. Let

zn := γ(1/n) ∈ S,

then zn → γ(0) = z0 from the continuity of γ, i.e., z0 is a condensation point of S.

Question 8.

b) Yes.

f(z) =
sin(2π/z)
sin(2π/i)

.

c) Applying Cauchy’s theorem:

0 =
∫

|z|=1

f(z)dz

(n + 1)z − 1
=

1
n + 1

∫

|z|=1

f(z)dz

z − 1
n+1

=
2πi

n + 1
f

(
1

n + 1

)

implies that f(1/n + 1) = 0 for all n ≥ 1. Since f is continuous in Ball2(0), we
must have f(0) = 0 and then applying the uniqueness theorem to get that f = 0.


