HOMEWORK SHEET 8: SOLUTIONS

INTRODUCTION TO COMPLEX ANALYSIS FOR ELECTRIC ENGINEERING

Question 1.

a) The function $f(z)=\frac{e^{t z}}{z^{2}+1}$ is analytic in $\mathbb{C} \backslash\{ \pm i\}$ and in particular in $\operatorname{Ball}_{1 / 2}(0)$, therefore the integral is equal to 0 .
b)(i) Yes. Let $a_{n}=\frac{1}{n^{2}}$, then it is easy to check that the radius of convergence is $R=1$, while for every $|z|=1$ we have $\sum\left|a_{n} z^{n}\right|=\sum \frac{1}{n^{2}}$ converges.
b)(ii) Yes. Let $a_{n}=1$, then it is easy to check that the radius of convergence is $R=1$, however for every $|z|=1$ we have $\left|a_{n} z^{n}\right|=1$ and so $\sum a_{n} z^{n}$ does not converge.
c) As $\operatorname{ord}_{z_{0}}(f)=n$, there exists $g \in \mathcal{O}(\mathcal{U})$ such that $f(z)=\left(z-z_{0}\right)^{n} g(z)$ with $g\left(z_{0}\right) \neq 0$. Since g is continuous at z_{0} and $g\left(z_{0}\right) \neq 0$, there exists $\varepsilon>0$ such that the image of $g(z)$ on $\operatorname{Ball}\left(z_{0}\right)$ lies in a domain of an analytic branch of \log and we can define an analytic function $\log (g(z))$ in $\operatorname{Ball}\left(z_{0}\right)$. Therefore, let

$$
h(z):=\left(z-z_{0}\right) e^{\frac{1}{n} \log (g(z))}
$$

which is an analytic function in $\operatorname{Ball}_{\varepsilon}\left(z_{0}\right)$ such that $h(z)^{n}=\left(z-z_{0}\right)^{n} g(z)=f(z)$.

Question 2

a) We have

$$
f\left(\frac{1}{n}\right)=\frac{1}{n^{2}+1}=\frac{1}{\frac{1}{\left(\frac{1}{n}\right)^{2}}+1}=g\left(\frac{1}{n}\right)
$$

where $g(z)=\frac{1}{\frac{1}{z^{2}+1}}=\frac{z^{2}}{z^{2}+1}$. As $f\left(\frac{1}{n}\right)=g\left(\frac{1}{n}\right)$ for n large enough (such that $\frac{1}{n}<\varepsilon$) and both f and g are analytic in $\operatorname{Ball}_{\varepsilon}(0)$, the theorem of uniqueness guarantees that $f(z)=g(z)$ for all $z \in \operatorname{Ball}_{\varepsilon}(0)$, in particular $f\left(\frac{\varepsilon}{2}\right)=g\left(\frac{\varepsilon}{2}\right)=\frac{\frac{\varepsilon^{2}}{4}}{\frac{\varepsilon^{2}}{4}+1}=\frac{\varepsilon^{2}}{\varepsilon^{2}+4}$.
b) Suppose that for every $n \in \mathbb{N}$ we have $f\left(\frac{1}{n}\right)=\frac{1}{n+1}$. Similarly to the previous part, let $g(z)=\frac{1}{\frac{1}{z}+1}=\frac{z}{z+1}$, thus $f\left(\frac{1}{n}\right)=g\left(\frac{1}{n}\right)$ for every $n \in \mathbb{N}$ and from the uniqueness theorem we get that $f(z)=g(z)$ for all $z \in \operatorname{Ball}_{3 / 2}(0)$, however g is not defined at $z=-1 \in \operatorname{Ball}_{3 / 2}(0)$, which is a contradiction.
c) If $f(\lambda z)=f(z)$ for all $z \in \mathbb{C}$, then we consider the Taylor expansions of both functions:

$$
\sum_{n=0}^{\infty} a_{n} z^{n}=\sum_{n=0}^{\infty} a_{n}(\lambda z)^{n} \Longrightarrow \sum_{n=0}^{\infty} a_{n}\left(1-\lambda^{n}\right) z^{n}=0
$$

and that implies the coefficients must all vanish, i.e.,

$$
a_{n}\left(1-\lambda^{n}\right)=0, \forall n \geq 0
$$

As f is non-constant, we have $a_{n} \neq 0$ for some $n \geq 1$, hence $\lambda^{n}=1$. Therefore, this is only possible when λ satisfies $\lambda^{n}=1$ for some $n>1$.
d) As $f(i t)=f(i(t+1))=f(i(t+\sqrt{2}))$ for all $t \in \mathbb{R}$, we know that $f(z)=f(0)$ for every

$$
z \in X:=\{i(m \sqrt{2}+n): n, m \in \mathbb{Z}\}
$$

So we have a set of points on which the function is constant; we would like to apply the theorem of uniqueness, for that we need the set to have a condensation point.

Consider the following subset of X, given by

$$
X_{1}:=\{i(m \sqrt{2}-[m \sqrt{2}]): m \in \mathbb{Z}\}
$$

It is easy to see that

$$
m_{1} \sqrt{2}+n_{1}=m_{2} \sqrt{2}+n_{2} \Longleftrightarrow m_{1}=m_{2}, n_{1}=n_{2}
$$

therefore it means that the set X_{1} is infinite; moreover, for every $m \in \mathbb{Z}$ we have $|i(m \sqrt{2}-[m \sqrt{2}])| \leq 1$, meaning that $X_{1} \subseteq \operatorname{Ball}_{1}(0)$ and so X_{1} is bounded.

We have $f(z)=f(0)$ for every $z \in X_{1}$, which is infinite and bounded set, therefore the theorem of uniqueness guarantees that $f(z)=f(0)$ for every $z \in \mathbb{C}$, i.e., f is constant.
e) We know that the coefficients in the Taylor expansion is given by

$$
c_{n, z_{0}}=\frac{f^{(n)}\left(z_{0}\right)}{n!}
$$

therefore we get that $f^{(1001)}\left(z_{0}\right)=0$ for all $z_{0} \in \mathcal{U}$, which clearly implies that f must be a polynomial of degree at most 1000.
f) See question 6 in Tirgul 9 .

Question 3.

a) Let $f(z)=z^{4}-z$. By the maximum principle for $f(z)$ in $\overline{B a l l_{1}(0)}$, we get

$$
\max _{|z| \leq 1}|f(z)|=\max _{|z|=1}|f(z)|=\max _{|z|=1}\left|z^{3}-1\right| .
$$

For every $|z|=1$ we have

$$
\left|z^{3}-1\right|=\left|e^{3 i \theta}-1\right|=\sqrt{(\cos (3 \theta)-1)^{2}+\sin (3 \theta)^{2}}=\sqrt{2-2 \cos (3 \theta)}
$$

which has a maximal value when $\cos (3 \theta)=-1$, thus

$$
\max _{|z| \leq 1}|f(z)|=2
$$

Clearly, $\min _{|z| \leq 1}|f(z)|=0$ as $|f(z)| \geq 0=|f(0)|$.
b) As $\sin (z)$ is analytic and non-constant, from the maximum principle (and the fact that $\sin (z)$ has a period of $2 \pi)$ we have

$$
\max _{z \in[0,2 \pi]^{2}}|\sin (z)|=\max \left\{\max _{x \in[0,2 \pi]}|\sin (x)|, \max _{x \in[0,2 \pi]}|\sin (x i)|, \max _{x \in[0,2 \pi]}|\sin (x+2 \pi i)|\right\}
$$

Next,

$$
\begin{gathered}
\max _{x \in[0,2 \pi]}|\sin (x)|=1 \\
|\sin (x i)|=\left|\frac{e^{-x}-e^{x}}{2 i}\right|=\frac{e^{x}-e^{-x}}{2}
\end{gathered}
$$

is monotonic increasing (as its derivative is ≥ 0) and hence

$$
\max _{x \in[0,2 \pi]}|\sin (x i)|=\frac{e^{2 \pi}-e^{-2 \pi}}{2}
$$

and

$$
\begin{aligned}
&|\sin (x+2 \pi i)|=|\sin (x) \cos (2 \pi i)+\cos (x) \sin (2 \pi i)| \\
&=\left|\sin (x)\left(\frac{e^{-2 \pi}+e^{2 \pi}}{2}\right)+\cos (x)\left(\frac{e^{-2 \pi}-e^{2 \pi}}{2 i}\right)\right| \\
&= \sqrt{\sin ^{2}(x)\left(\frac{e^{-4 \pi}+2+e^{4 \pi}}{4}\right)+\cos ^{2}(x)\left(\frac{e^{-4 \pi}-2+e^{4 \pi}}{4}\right)} \\
&=\frac{1}{2} \sqrt{e^{-4 \pi}+e^{4 \pi}+2\left(\sin ^{2}(x)-\cos ^{2}(x)\right)}=\frac{1}{2} \sqrt{e^{-4 \pi}+e^{4 \pi}-2 \cos (2 x)}
\end{aligned}
$$

which implies that

$$
\max _{x \in[0,2 \pi]}|\sin (x+2 \pi i)|=\frac{\sqrt{e^{-4 \pi}+e^{4 \pi}+2}}{2}=\frac{e^{-2 \pi}+e^{2 \pi}}{2} .
$$

Therefore,

$$
\max _{z \in[0,2 \pi]^{2}}|\sin (z)|=\max \left\{1, \frac{e^{2 \pi} \pm e^{-2 \pi}}{2}\right\}=\frac{e^{2 \pi}+e^{-2 \pi}}{2}
$$

c)(i) We have $z \bar{z}=|z|^{2}=1$, then $\bar{z}=1 / z$ and

$$
|z-a|=|\overline{z-a}|=\left|\frac{1}{z}-\bar{a}\right|=\frac{|1-\bar{a} z|}{|z|}=|1-\bar{a} z|
$$

c)(ii) Let

$$
f(z)=\prod_{k=1}^{n} \frac{z-a_{k}}{1-\overline{a_{k}} z},
$$

as $1-\overline{a_{k}} z=0 \Longleftrightarrow z=1 / \overline{a_{k}}$ and $\left|1 / \overline{a_{k}}\right|>1$, we get that f is analytic in $\overline{\operatorname{Ball}_{1}(0)}$. From the first part of the question, for every $|z|=1$ we have $|f(z)|=1$ and as f is non-constant, we get from the maximum principle that for every $|z|<1,|f(z)|<1$.
e)(i) No. Any analytic f and z_{0} such that $f\left(z_{0}\right)=0$ is a counter example.
e)(ii) Yes. Suppose z_{0} is a local minimum of $f(z)$. As f is continuous in a neighborhood of z_{0} and $f\left(z_{0}\right) \neq 0$, it follows that there exists $\varepsilon>0$ such that $\operatorname{Ball}_{\varepsilon}(0) \subseteq \mathcal{U}$ and $f(z) \neq 0$ for every $z \in \operatorname{Ball}_{\varepsilon}(0)$. Thus, the function $g(z):=1 / f(z)$ is (defined and) analytic in $\operatorname{Ball}_{\varepsilon}(0)$ and it has a local maximum at z_{0}. Nevertheless, since f is non-constant so is g in $\operatorname{Ball}_{\varepsilon}(0)$, which contradicts the maximum principle.
e)(iii) See question 2 in Tirgul 9 .
f) Denote the Box by $[-a, a]^{2}$ for some $a>0$, the upper side $\ell_{1}=[-a+a i, a+a i]$, the right side $\ell_{2}=[a+a i, a-a i]$, the lower side $\ell_{3}=[a-a i,-a-a i]$ and the left side $\ell_{4}=[-a-a i,-a+a i]$. Consider the function

$$
g(z):=\frac{f(z)+f(-z)+f(i z)+f(-i z)}{4} .
$$

As $f \in \mathcal{O}(\overline{B o x})$ it follows that $g \in \mathcal{O}(\overline{B o x})$, since $z \in \overline{B o x}$ implies that $-z, i z,-i z \in$ $\overline{B o x}$. Moreover, it is easily seen that

$$
z \in \ell_{1} \Longleftrightarrow-z \in \ell_{3} \Longleftrightarrow i z \in \ell_{4} \Longleftrightarrow-i z \in \ell_{2},
$$

therefore for every $z \in \partial B o x$, the points $z,-z, i z,-i z$ lie on different sides of the boundary of the box and thus $|g(z)| \leq \frac{1}{4}\left(\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}\right)$. Applying the maximum principle for $g(z)$, we have

$$
|f(0)|=|g(0)| \leq \max _{z \in \partial B o x}|g(z)| \leq \frac{\ell_{1}+\ell_{2}+\ell_{3}+\ell_{4}}{4}
$$

Question 4.

a) As $\operatorname{ord}_{0}(f) \geq n$, there exists $g \in \mathcal{O}\left(\overline{\text { Ball }_{1}(0)}\right)$ such that

$$
f(z)=z^{n} g(z), \forall z \in \overline{\operatorname{Ball}_{1}(0)}
$$

Then for every $|z|=1$ we have $|g(z)|=|f(z)| \leq 1$ and together with the maximum principle we get that $|g(z)| \leq 1$ for every $z \in \overline{\text { Ball }_{1}(0)}$. Therefore,

$$
|f(z)|=|z|^{n}|g(z)| \leq|z|^{n}, \forall z \in \overline{\text { Ball }_{1}(0)}
$$

b) Applying Schwartz's Lemma, we know that $|f(z)| \leq|z|$ for all $z \in \operatorname{Ball}_{1}(0)$. Therefore, $\left|f\left(z^{n}\right)\right| \leq|z|^{n}<r^{n}$ for every $z \in \operatorname{Ball}_{r}(0)$, while $\sum_{n=0}^{\infty} r^{n}$ converges and so $\sum_{n=0}^{\infty} f\left(z^{n}\right)$ converges uniformly in $\operatorname{Ball}_{r}(0)$, for every $0<r<1$.
c) See question 5 in Tirgul 9 .
d) Let $g(z)=\frac{1}{2}(f(z)+f(-z))$. As $f \in \mathcal{O}\left(\overline{\text { Ball }_{1}(0)}\right)$ and $|f(z)| \leq 1$ for $|z| \leq 1$, we get that $g \in \mathcal{O}\left(\overline{\operatorname{Ball}_{1}(0)}\right)$, with the property that $|g(z)| \leq 1$ for $|z| \leq 1$. Moreover, $g(0)=0$ and $g^{\prime}(0)=0$, so $\operatorname{ord}_{0}(g) \geq 2$ and applying the first part of the question to obtain that $|g(z)| \leq|z|^{2}$, therefore $|f(z)+f(-z)| \leq 2|z|^{2}$ in $\overline{\operatorname{Ball}_{1}(0)}$.

