
HOMEWORK SHEET 8: SOLUTIONS

INTRODUCTION TO COMPLEX ANALYSIS FOR ELECTRIC ENGINEERING

Question 1.

a) The function f(z) = etz

z2+1 is analytic in C \ {±i} and in particular in
Ball1/2(0), therefore the integral is equal to 0.

b)(i) Yes. Let an = 1
n2 , then it is easy to check that the radius of convergence is

R = 1, while for every |z| = 1 we have
∑

|anzn| =
∑

1
n2 converges.

b)(ii) Yes. Let an = 1, then it is easy to check that the radius of convergence
is R = 1, however for every |z| = 1 we have |anzn| = 1 and so

∑
anzn does not

converge.

c) As ordz0(f) = n, there exists g ∈ O(U) such that f(z) = (z − z0)ng(z) with
g(z0) 6= 0. Since g is continuous at z0 and g(z0) 6= 0, there exists ε > 0 such that
the image of g(z) on Ball(z0) lies in a domain of an analytic branch of log and we
can define an analytic function log(g(z)) in Ball(z0). Therefore, let

h(z) := (z − z0)e
1
n log(g(z))

which is an analytic function in Ballε(z0) such that h(z)n = (z − z0)ng(z) = f(z).

Question 2

a) We have

f

(
1
n

)

=
1

n2 + 1
=

1
1

( 1
n )2 + 1

= g

(
1
n

)

,

where g(z) = 1
1

z2 +1
= z2

z2+1 . As f
(

1
n

)
= g

(
1
n

)
for n large enough (such that 1

n < ε)

and both f and g are analytic in Ballε(0), the theorem of uniqueness guarantees

that f(z) = g(z) for all z ∈ Ballε(0), in particular f
(

ε
2

)
= g

(
ε
2

)
=

ε2

4
ε2
4 +1

= ε2

ε2+4 .

b) Suppose that for every n ∈ N we have f
(

1
n

)
= 1

n+1 . Similarly to the pre-
vious part, let g(z) = 1

1
z +1

= z
z+1 , thus f

(
1
n

)
= g

(
1
n

)
for every n ∈ N and from

the uniqueness theorem we get that f(z) = g(z) for all z ∈ Ball3/2(0), however g
is not defined at z = −1 ∈ Ball3/2(0), which is a contradiction.

c) If f(λz) = f(z) for all z ∈ C, then we consider the Taylor expansions of both
functions:

∞∑

n=0

anzn =
∞∑

n=0

an(λz)n =⇒
∞∑

n=0

an(1 − λn)zn = 0

1



2 INTRODUCTION TO COMPLEX ANALYSIS FOR ELECTRIC ENGINEERING

and that implies the coefficients must all vanish, i.e.,

an(1 − λn) = 0, ∀n ≥ 0.

As f is non-constant, we have an 6= 0 for some n ≥ 1, hence λn = 1. Therefore,
this is only possible when λ satisfies λn = 1 for some n > 1.

d) As f(it) = f(i(t + 1)) = f(i(t +
√

2)) for all t ∈ R, we know that f(z) = f(0)
for every

z ∈ X :=
{

i(m
√

2 + n) : n,m ∈ Z
}

.

So we have a set of points on which the function is constant; we would like to apply
the theorem of uniqueness, for that we need the set to have a condensation point.

Consider the following subset of X, given by

X1 :=
{

i(m
√

2 − [m
√

2]) : m ∈ Z
}

.

It is easy to see that

m1

√
2 + n1 = m2

√
2 + n2 ⇐⇒ m1 = m2, n1 = n2,

therefore it means that the set X1 is infinite; moreover, for every m ∈ Z we have
|i(m

√
2 − [m

√
2])| ≤ 1, meaning that X1 ⊆ Ball1(0) and so X1 is bounded.

We have f(z) = f(0) for every z ∈ X1, which is infinite and bounded set, there-
fore the theorem of uniqueness guarantees that f(z) = f(0) for every z ∈ C, i.e., f
is constant.

e) We know that the coefficients in the Taylor expansion is given by

cn,z0 =
f (n)(z0)

n!
,

therefore we get that f (1001)(z0) = 0 for all z0 ∈ U , which clearly implies that f
must be a polynomial of degree at most 1000.

f) See question 6 in Tirgul 9.

Question 3.

a) Let f(z) = z4 − z. By the maximum principle for f(z) in Ball1(0), we get

max
|z|≤1

|f(z)| = max
|z|=1

|f(z)| = max
|z|=1

|z3 − 1|.

For every |z| = 1 we have

|z3 − 1| = |e3iθ − 1| =
√

(cos(3θ) − 1)2 + sin(3θ)2 =
√

2 − 2 cos(3θ)

which has a maximal value when cos(3θ) = −1, thus

max
|z|≤1

|f(z)| = 2.

Clearly, min|z|≤1 |f(z)| = 0 as |f(z)| ≥ 0 = |f(0)|.

b) As sin(z) is analytic and non-constant, from the maximum principle (and the
fact that sin(z) has a period of 2π) we have

max
z∈[0,2π]2

| sin(z)| = max

{

max
x∈[0,2π]

| sin(x)| , max
x∈[0,2π]

| sin(xi)| , max
x∈[0,2π]

| sin(x + 2πi)|

}

.
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Next,
max

x∈[0,2π]
| sin(x)| = 1,

| sin(xi)| =

∣
∣
∣
∣
e−x − ex

2i

∣
∣
∣
∣ =

ex − e−x

2
is monotonic increasing (as its derivative is ≥ 0) and hence

max
x∈[0,2π]

| sin(xi)| =
e2π − e−2π

2
,

and

| sin(x + 2πi)| = | sin(x) cos(2πi) + cos(x) sin(2πi)|

=

∣
∣
∣
∣sin(x)

(
e−2π + e2π

2

)

+ cos(x)

(
e−2π − e2π

2i

)∣∣
∣
∣

=

√

sin2(x)

(
e−4π + 2 + e4π

4

)

+ cos2(x)

(
e−4π − 2 + e4π

4

)

=
1
2

√
e−4π + e4π + 2(sin2(x) − cos2(x)) =

1
2

√
e−4π + e4π − 2 cos(2x)

which implies that

max
x∈[0,2π]

| sin(x + 2πi)| =

√
e−4π + e4π + 2

2
=

e−2π + e2π

2
.

Therefore,

max
z∈[0,2π]2

| sin(z)| = max

{

1,
e2π ± e−2π

2

}

=
e2π + e−2π

2
.

c)(i) We have zz = |z|2 = 1, then z = 1/z and

|z − a| = |z − a| =

∣
∣
∣
∣
1
z
− a

∣
∣
∣
∣ =

|1 − az|
|z|

= |1 − az|.

c)(ii) Let

f(z) =
n∏

k=1

z − ak

1 − akz
,

as 1−akz = 0 ⇐⇒ z = 1/ak and |1/ak| > 1, we get that f is analytic in Ball1(0).
From the first part of the question, for every |z| = 1 we have |f(z)| = 1 and as f is
non-constant, we get from the maximum principle that for every |z| < 1, |f(z)| < 1.

e)(i) No. Any analytic f and z0 such that f(z0) = 0 is a counter example.

e)(ii) Yes. Suppose z0 is a local minimum of f(z). As f is continuous in a neighbor-
hood of z0 and f(z0) 6= 0, it follows that there exists ε > 0 such that Ballε(0) ⊆ U
and f(z) 6= 0 for every z ∈ Ballε(0). Thus, the function g(z) := 1/f(z) is (defined
and) analytic in Ballε(0) and it has a local maximum at z0. Nevertheless, since f
is non-constant so is g in Ballε(0), which contradicts the maximum principle.

e)(iii) See question 2 in Tirgul 9.
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f) Denote the Box by [−a, a]2 for some a > 0, the upper side `1 = [−a + ai, a + ai],
the right side `2 = [a + ai, a − ai], the lower side `3 = [a − ai,−a − ai] and the left
side `4 = [−a − ai,−a + ai]. Consider the function

g(z) :=
f(z) + f(−z) + f(iz) + f(−iz)

4
.

As f ∈ O(Box) it follows that g ∈ O(Box), since z ∈ Box implies that −z, iz,−iz ∈
Box. Moreover, it is easily seen that

z ∈ `1 ⇐⇒ −z ∈ `3 ⇐⇒ iz ∈ `4 ⇐⇒ −iz ∈ `2,

therefore for every z ∈ ∂Box, the points z,−z, iz,−iz lie on different sides of the
boundary of the box and thus |g(z)| ≤ 1

4 (`1 + `2 + `3 + `4). Applying the maximum
principle for g(z), we have

|f(0)| = |g(0)| ≤ max
z∈∂Box

|g(z)| ≤
`1 + `2 + `3 + `4

4
.

Question 4.

a) As ord0(f) ≥ n, there exists g ∈ O(Ball1(0)) such that

f(z) = zng(z), ∀z ∈ Ball1(0).

Then for every |z| = 1 we have |g(z)| = |f(z)| ≤ 1 and together with the maximum
principle we get that |g(z)| ≤ 1 for every z ∈ Ball1(0). Therefore,

|f(z)| = |z|n|g(z)| ≤ |z|n, ∀z ∈ Ball1(0).

b) Applying Schwartz’s Lemma, we know that |f(z)| ≤ |z| for all z ∈ Ball1(0).
Therefore, |f(zn)| ≤ |z|n < rn for every z ∈ Ballr(0), while

∑∞
n=0 rn converges

and so
∑∞

n=0 f(zn) converges uniformly in Ballr(0), for every 0 < r < 1.

c) See question 5 in Tirgul 9.

d) Let g(z) = 1
2 (f(z) + f(−z)). As f ∈ O(Ball1(0)) and |f(z)| ≤ 1 for |z| ≤ 1, we

get that g ∈ O(Ball1(0)), with the property that |g(z)| ≤ 1 for |z| ≤ 1. Moreover,
g(0) = 0 and g′(0) = 0, so ord0(g) ≥ 2 and applying the first part of the question
to obtain that |g(z)| ≤ |z|2, therefore |f(z) + f(−z)| ≤ 2|z|2 in Ball1(0).


