
Selected Answers to HW 7

Question 1

By Cauchy’s formula:

|pj | =

∣∣∣∣∣ 1

2πi

∫
|z|=1

p(z)

zn+1
dz

∣∣∣∣∣ ≤ max
|z|=1

|p(z)| ≤ 1.

where the first inequality is by the integral triangle inequality, and the fact that the length of the circle

is 2π.

Question 3

Item c

This is immediately by Cauchy’s formula. If |f(z)| ≤ C on the circle, then

|an| =

∣∣∣∣∣ 1

2πi

∫
|z|=ρ

f(z)

zn+1
dz

∣∣∣∣∣ ≤ ρ2πmax
|z|=ρ

|f(z)| ρ−(n+1) ≤ C

ρn
.

Item d

Fix q = e2πiα for a non-rational α. Obviously any constant function has that f(z) = f(qz). We will

show that any function with this property must be constant. Suppose that f(z) is defined on the ring

r < |z| < R, then we can write f(z) =
∑∞
n=−∞ anz

n. Multiplying by q doesn’t change the norm of z

thus f(qz) is defined in the same ring. Thus

f(qz) =

∞∑
n=−∞

(anq
n)zn.

In particular by uniqueness of the Laurent series, an = anq
n. Since α is not rational, then nα is never

an integer when n 6= 0. thus qn = e2πi(nα) is never 1. This indicates that for all n 6= 0, an = 0. Thus f

is constant.

Another Solution q is not rational, which means that qt 6= 1 for any integer t 6= 0. This implies that

for any n 6= m qn 6= qm (because qn−m 6= 1). Thus the sequence wn = qnz0 is a sequence of infinitely

many distinct points for any z0. For any wn we note that f(wn) = f(w0).

This sequence lies in the circle of radius r = |z0| thus it has a convergent sub-sequence. From the

uniqueness theorem, f has a sequence that has a sequence with a cluster point on which it is constant -

the f is constant.

Question 4

Item a

See similar questions in Tirgul 9.
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Item b

When f has an essential point at z0 and g has a pole of order m:

i. f + g has an essential point, since the Laurent series has infinite number of negative terms.

ii. f(z)g(z) - an essential point. Note that if g(z) is a pole then g(z) = h(z)
(z−z0)N for some analytic

function h(z) so that h(z0) 6= 0. limz→z0 f(z)h(z) doesn’t exist (otherwise limz→z0 f(z) would exist,

thus the Laurent series of f(z)h(z) has infinitely many negative terms. Hence the Laurent expansion

of f(z)h(z)
(z−z0)N = f(z)g(z) has infinitely many negative terms - and z0 is an essential point1.

iii. 1/f has an essential point, since if there was a limit to 1/f(z) then there was a limit to f(z) when

z → z0 (which might have been infinity).

iv. f ′ has an essential point, since the a derivative of its essential part can be taken one-by-one, i.e.( −1∑
n=−∞

an(z − z0)n

)′
=

−1∑
n=−∞

nan(z − z0)n−1.

so if the series of f(z) has infinite number of negative terms, then so does the series for f ′(z).

v. g(n) By the same reasoning as above g has a pole of order m+ n.

vi. ef(z) is an essential point. The range of the function f is dense in C in any ball around z0, thus

there are two sequences where zn → z0,wn → z0 where f(zn)→ 0 and f(wn)→ 1. In particular by

continuity we get that ef(zn) → 1 and ef(wn) → e, thus no limit exists when z → z0.

Item c

Notice that we can extend g(z) = (z − z0)f(z) analyticly to z0, and this function has a zero at z0. Thus

by a theorem we saw in class, we can write g(z) = zkh(z) for k > 0 and an analytic function h(z) in a

ball around z0. In particular we can write f(z) = zk−1h(z) and thus z0 is a removable singularity for f .

Item d

It is enough to prove that 0 is an essential singular point for the function f(z) = Log(1+z3)e
1
z −cos2(z).

Indeed, cos2(z) has no singularity at 0 and thus it is enough to show that Log(1 + z3)e
1
z has an essential

singularity. Furthermore, Log(1 + z3) = z3g(z) for some g(z) analytic in a ball around 0 s.t. g(0) 6= 0.

The function e
1
z g(z) has an essential singularity since if it had a limit (including infinity) then so would

e
1
z . If e

1
z g(z) has an essential singularity point at 0 then so does Log(1 + z3)e

1
z = z3e

1
z g(z) since

multiplying by z3 doesn’t change the fact that the Laurent series doesn’t end at some finite an.

Item e

Note that from the fact that |f(z)| ≥ Ce
1
|z| for some C > 0 we get that limz→0 |f(z)| = ∞. Thus f(z)

has a pole of order N at 0 for some N ≥ 1. Hence,

f(z) =
g(z)

zN

for some g(z) analytic in some ball around 0. Thus

|f(z)| ≥ Ce
1
|z| ⇒ |g(z)| ≥ C|zN |e1/|z|

1It is tempting to say that because f(z) Laurent series has infinitely many negative terms then so does the Laurent

series of f(z)g(z) directly. However, this might not be true when f(z) is not defined in a ball around z0. For example take

f(z) =
∑∞

n=1 z
−n and g(z) = 1 − 1

z
.
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But the expression |zN |e1/|z| still goes to infinity for every N as |z| → 0+. This is a contradiction to the

fact that g is bounded around 0.

Question 5

Item a

ĥ(n) =
1

2πi

∫ 2π

0

h(eit)ieite−intdt =
1

2πi

∫
∂B1(0)

g(z)

zn+1
dz.

Notice that as g(ξ)
z−ξ is continuously diffrentiable (by t), then

∂n

dzn
f1(z) =

1

2πi

∫
∂B1(0)

∂n

dzn
g(ξ)

z − ξ
dξ =

n!

2πi

∫
∂B1(0)

g(ξ)

(z − ξ)n+1
dξ

So in particular, for all n ≥ 0

ĥ(n) =
1

n!
f
(n)
1 (0) = an,

where an is the n-th Taylor expansion coefficient.

Similarly we can prove that for all n < 0

ĥ(n) =
1

n!
f
(n)
2 (0) = bn.

which is the n-th Laurent coefficient.

Item b

First note that because g is analytic in a ring 1− ε < |z| < 1 + ε then for any |w| < 1∫
∂B1(0)

g(ξ)

ξ − w
dξ =

∫
∂B1+ε/2(0)

g(ξ)

ξ − w
dξ.

Thus we can define f1(w by the integral on |ξ| = 1 + ε
2 and use the same definition to define f1 on

B1+ε/2(0).

We do a similar thing for f2 (but with 1− ε
2 ).

Thus by Cauchy’s integral formula (where we use the ring
{

1− ε
2 < |z| < 1 + ε

2

}
as our domain):

h(t) = g(eit) =

∫
∂{1− ε

2<|z|<1+ ε
2}

g(ξ)

ξ − eit
dξ = f1(eit) + f2(eit).
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