Selected Answers to HW 7

Question 1

By Cauchy's formula:

$$
\left|p_{j}\right|=\left|\frac{1}{2 \pi i} \int_{|z|=1} \frac{p(z)}{z^{n+1}} d z\right| \leq \max _{|z|=1}|p(z)| \leq 1
$$

where the first inequality is by the integral triangle inequality, and the fact that the length of the circle is 2π.

Question 3

Item c

This is immediately by Cauchy's formula. If $|f(z)| \leq C$ on the circle, then

$$
\left|a_{n}\right|=\left|\frac{1}{2 \pi i} \int_{|z|=\rho} \frac{f(z)}{z^{n+1}} d z\right| \leq \rho 2 \pi \max _{|z|=\rho}|f(z)| \rho^{-(n+1)} \leq \frac{C}{\rho^{n}}
$$

Item d

Fix $q=e^{2 \pi i \alpha}$ for a non-rational α. Obviously any constant function has that $f(z)=f(q z)$. We will show that any function with this property must be constant. Suppose that $f(z)$ is defined on the ring $r<|z|<R$, then we can write $f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}$. Multiplying by q doesn't change the norm of z thus $f(q z)$ is defined in the same ring. Thus

$$
f(q z)=\sum_{n=-\infty}^{\infty}\left(a_{n} q^{n}\right) z^{n}
$$

In particular by uniqueness of the Laurent series, $a_{n}=a_{n} q^{n}$. Since α is not rational, then $n \alpha$ is never an integer when $n \neq 0$. thus $q^{n}=e^{2 \pi i(n \alpha)}$ is never 1 . This indicates that for all $n \neq 0, a_{n}=0$. Thus f is constant.

Another Solution q is not rational, which means that $q^{t} \neq 1$ for any integer $t \neq 0$. This implies that for any $n \neq m q^{n} \neq q^{m}$ (because $q^{n-m} \neq 1$). Thus the sequence $w_{n}=q^{n} z_{0}$ is a sequence of infinitely many distinct points for any z_{0}. For any w_{n} we note that $f\left(w_{n}\right)=f\left(w_{0}\right)$.

This sequence lies in the circle of radius $r=\left|z_{0}\right|$ thus it has a convergent sub-sequence. From the uniqueness theorem, f has a sequence that has a sequence with a cluster point on which it is constant the f is constant.

Question 4

Item a

See similar questions in Tirgul 9.

Item b

When f has an essential point at z_{0} and g has a pole of order m :
i. $f+g$ has an essential point, since the Laurent series has infinite number of negative terms.
ii. $f(z) g(z)$ - an essential point. Note that if $g(z)$ is a pole then $g(z)=\frac{h(z)}{\left(z-z_{0}\right)^{N}}$ for some analytic function $h(z)$ so that $h\left(z_{0}\right) \neq 0 . \lim _{z \rightarrow z_{0}} f(z) h(z)$ doesn't exist (otherwise $\lim _{z \rightarrow z_{0}} f(z)$ would exist, thus the Laurent series of $f(z) h(z)$ has infinitely many negative terms. Hence the Laurent expansion of $\frac{f(z) h(z)}{\left(z-z_{0}\right)^{N}}=f(z) g(z)$ has infinitely many negative terms - and z_{0} is an essential point ${ }^{1}$.
iii. $1 / f$ has an essential point, since if there was a limit to $1 / f(z)$ then there was a limit to $f(z)$ when $z \rightarrow z_{0}$ (which might have been infinity).
iv. f^{\prime} has an essential point, since the a derivative of its essential part can be taken one-by-one, i.e.

$$
\left(\sum_{n=-\infty}^{-1} a_{n}\left(z-z_{0}\right)^{n}\right)^{\prime}=\sum_{n=-\infty}^{-1} n a_{n}\left(z-z_{0}\right)^{n-1}
$$

so if the series of $f(z)$ has infinite number of negative terms, then so does the series for $f^{\prime}(z)$.
v. $g^{(n)}$ By the same reasoning as above g has a pole of order $m+n$.
vi. $e^{f(z)}$ is an essential point. The range of the function f is dense in \mathbb{C} in any ball around z_{0}, thus there are two sequences where $z_{n} \rightarrow z_{0}, w_{n} \rightarrow z_{0}$ where $f\left(z_{n}\right) \rightarrow 0$ and $f\left(w_{n}\right) \rightarrow 1$. In particular by continuity we get that $e^{f\left(z_{n}\right)} \rightarrow 1$ and $e^{f\left(w_{n}\right)} \rightarrow e$, thus no limit exists when $z \rightarrow z_{0}$.

Item c

Notice that we can extend $g(z)=\left(z-z_{0}\right) f(z)$ analyticly to z_{0}, and this function has a zero at z_{0}. Thus by a theorem we saw in class, we can write $g(z)=z^{k} h(z)$ for $k>0$ and an analytic function $h(z)$ in a ball around z_{0}. In particular we can write $f(z)=z^{k-1} h(z)$ and thus z_{0} is a removable singularity for f.

Item d

It is enough to prove that 0 is an essential singular point for the function $f(z)=\log \left(1+z^{3}\right) e^{\frac{1}{z}}-\cos ^{2}(z)$. Indeed, $\cos ^{2}(z)$ has no singularity at 0 and thus it is enough to show that $\log \left(1+z^{3}\right) e^{\frac{1}{z}}$ has an essential singularity. Furthermore, $\log \left(1+z^{3}\right)=z^{3} g(z)$ for some $g(z)$ analytic in a ball around 0 s.t. $g(0) \neq 0$. The function $e^{\frac{1}{z}} g(z)$ has an essential singularity since if it had a limit (including infinity) then so would $e^{\frac{1}{z}}$. If $e^{\frac{1}{z}} g(z)$ has an essential singularity point at 0 then so does $\log \left(1+z^{3}\right) e^{\frac{1}{z}}=z^{3} e^{\frac{1}{z}} g(z)$ since multiplying by z^{3} doesn't change the fact that the Laurent series doesn't end at some finite a_{n}.

Item e

Note that from the fact that $|f(z)| \geq C e^{\frac{1}{|z|}}$ for some $C>0$ we get that $\lim _{z \rightarrow 0}|f(z)|=\infty$. Thus $f(z)$ has a pole of order N at 0 for some $N \geq 1$. Hence,

$$
f(z)=\frac{g(z)}{z^{N}}
$$

for some $g(z)$ analytic in some ball around 0 . Thus

$$
|f(z)| \geq C e^{\frac{1}{|z|}} \Rightarrow|g(z)| \geq C\left|z^{N}\right| e^{1 /|z|}
$$

[^0]But the expression $\left|z^{N}\right| e^{1 /|z|}$ still goes to infinity for every N as $|z| \rightarrow 0^{+}$. This is a contradiction to the fact that g is bounded around 0 .

Question 5

Item a

$$
\hat{h}(n)=\frac{1}{2 \pi i} \int_{0}^{2 \pi} h\left(e^{i} t\right) i e^{i t} e^{-i n t} d t=\frac{1}{2 \pi i} \int_{\partial B_{1}(0)} \frac{g(z)}{z^{n+1}} d z
$$

Notice that as $\frac{g(\xi)}{z-\xi}$ is continuously diffrentiable (by t), then

$$
\begin{gathered}
\frac{\partial^{n}}{d z^{n}} f_{1}(z)=\frac{1}{2 \pi i} \int_{\partial B_{1}(0)} \\
\frac{\partial^{n}}{d z^{n}} \frac{g(\xi)}{z-\xi} d \xi=\frac{n!}{2 \pi i} \int_{\partial B_{1}(0)} \frac{g(\xi)}{(z-\xi)^{n+1}} d \xi
\end{gathered}
$$

So in particular, for all $n \geq 0$

$$
\hat{h}(n)=\frac{1}{n!} f_{1}^{(n)}(0)=a_{n}
$$

where a_{n} is the n-th Taylor expansion coefficient.
Similarly we can prove that for all $n<0$

$$
\hat{h}(n)=\frac{1}{n!} f_{2}^{(n)}(0)=b_{n}
$$

which is the n-th Laurent coefficient.

Item b

First note that because g is analytic in a ring $1-\varepsilon<|z|<1+\varepsilon$ then for any $|w|<1$

$$
\int_{\partial B_{1}(0)} \frac{g(\xi)}{\xi-w} d \xi=\int_{\partial B_{1+\varepsilon / 2}(0)} \frac{g(\xi)}{\xi-w} d \xi
$$

Thus we can define $f_{1}\left(w\right.$ by the integral on $|\xi|=1+\frac{\varepsilon}{2}$ and use the same definition to define f_{1} on $B_{1+\varepsilon / 2}(0)$.

We do a similar thing for f_{2} (but with $1-\frac{\varepsilon}{2}$).
Thus by Cauchy's integral formula (where we use the ring $\left\{1-\frac{\varepsilon}{2}<|z|<1+\frac{\varepsilon}{2}\right\}$ as our domain):

$$
h(t)=g\left(e^{i t}\right)=\int_{\partial\left\{1-\frac{\varepsilon}{2}<|z|<1+\frac{\varepsilon}{2}\right\}} \frac{g(\xi)}{\xi-e^{i t}} d \xi=f_{1}\left(e^{i t}\right)+f_{2}\left(e^{i t}\right)
$$

[^0]: ${ }^{1}$ It is tempting to say that because $f(z)$ Laurent series has infinitely many negative terms then so does the Laurent series of $f(z) g(z)$ directly. However, this might not be true when $f(z)$ is not defined in a ball around z_{0}. For example take $f(z)=\sum_{n=1}^{\infty} z^{-n}$ and $g(z)=1-\frac{1}{z}$.

