Geometric Calculus 2, 201.1.1041

The midterm, 19.05.2022, two hours.
(Lecturer: Dmitry Kerner)
No auxiliary material is allowed.
Solve all the questions. The total is 105 points.
Do not write in red color!

1. Fix the norm $\|A\|=\sqrt{\operatorname{trace}\left(A \cdot A^{t}\right)}$ on $M a t_{2 \times 2}(\mathbb{R})$, and identify $M a t_{2 \times 2(\mathbb{R})} \cong \mathbb{R}^{4}$. Take the subset $\Sigma=\{A \mid \operatorname{det}(A)=0\} \subset M a t_{2 \times 2}(\mathbb{R})$.
a. (10 points) Prove: $\Sigma \backslash\{\mathbb{O}\}$ is a C^{∞}-submanifold of Mat ${ }_{2 \times 2(\mathbb{R})}$.
b. (10 points) Specify charts and their transition maps for $\Sigma \backslash \mathbb{O}$.
c. (10 points) Describe (explicitly) the tangent space $T_{A} \Sigma \subset M a t_{2 \times 2}(\mathbb{R})$ for $A=\left[\begin{array}{cc}\sqrt{3} & \ln (2) \\ 0 & 0\end{array}\right]$.
d. (15 points) Prove: the germ (Σ, \mathbb{O}) is not a C^{1}-submanifold of $M a t_{2 \times 2}(\mathbb{R})$.
2. (10 points) Define the map $\mathbb{R}_{\underline{x}}^{2} \rightarrow \mathbb{R}_{\underline{y}}^{2}$ by $\underline{x} \rightarrow \underline{y}:=A \underline{x}$, for an invertible matrix $A \in M a t_{2 \times 2}(\mathbb{R})$. Find the vector field on $\mathbb{R}_{\underline{x}}^{2}$ whose pushforward is $\frac{\partial}{\partial y_{1}}-\frac{\partial}{\partial y_{2}}$.
3. (10 points) Define the map $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}^{3}$ by $t \rightarrow\left(\sin (t), \tan (t), e^{t}\right)$. Specify a 1 -form on \mathbb{R}^{3} whose pullback is $t^{2} d t$.
4. (20 points) The support of a form $\omega \in \Omega^{1}(M)$ is defined as the closure, $\operatorname{supp}(\omega)=\overline{\left\{p|\omega|_{p} \neq 0\right\}} \subseteq$ M. For any covering by open sets $M=\cup \mathcal{U}_{\alpha}$ prove: $\omega=\sum \omega_{\alpha}$ where $\operatorname{supp}\left(\omega_{\alpha}\right) \subseteq \mathcal{U}_{\alpha}$.
5. (20 points) Given a (differentiable) map $M \xrightarrow{\psi} \tilde{M}$, a function f on \tilde{M}, and a vector field ξ on M, prove: $\psi^{*}\left(\psi_{*}(\xi)(f)\right)=\xi\left(\psi^{*}(f)\right)$.
