

1. a. (7 points) Prove: if M is a path-connected manifold then the dimension of the germ $\operatorname{dim}(M, p)$ does not depend on the point $p \in M$.
b. (11 points) Take a manifold with two charts, $M=\mathcal{U}_{1} \cup \mathcal{U}_{2}$. Suppose the set $\mathcal{U}_{1} \cap \mathcal{U}_{2}$ is path-connected. Prove: M is orientable.
2. a. (7 points) A form $\omega \in \Lambda_{\Lambda}^{2} V^{*}$ is called non-degenerate if for each $v \in V$ exists $u \in V$ such that $\omega(v, u) \neq 0$. Prove: if $\operatorname{dim}(V)$ is odd then every 2 -form is degenerate.
b. (11 points) A vector field ξ on \mathbb{R}^{N} is called tangent to a submanifold $M \subset \mathbb{R}^{N}$ if $\left.\xi\right|_{p} \in T_{p} M$ for each point $p \in M$. Suppose $M \subset \mathbb{R}^{N}$ is defined by the equation $f(\underline{x})=0$, with $\left.\operatorname{grad}(f)\right|_{p} \neq 0$ for each $p \in M$. Prove: ξ is tangent to M iff $\left.\xi(f)\right|_{M}=0$.
c. (7 points) Express the form $\omega=g(\|x\|) \cdot \sum x_{i} d x^{i} \in \Omega^{1}\left(\mathbb{R}^{3} \backslash(0,0,0)\right)$ in the polar coordinates. (Hint: no long computations.)
d. (11 points) Given a smooth map $\phi: M \rightarrow \tilde{M}$ and forms $\omega_{1}, \omega_{2} \in \Omega^{1}(\tilde{M})$ prove: $\phi^{*}\left(\omega_{1} \wedge\right.$ $\left.\omega_{2}\right)=\phi^{*}\left(\omega_{1}\right) \wedge \phi^{*}\left(\omega_{2}\right)$.
3. (20 points) Compute $\int_{C} \frac{-y d x+x d y}{x^{2}+y^{2}}$, where $C \subset \mathbb{R}^{2}$ is defined by $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and is oriented counterclockwise.
4. a. (10 points) A subset $M \subset \mathbb{R}^{n+1}$ is defined by the equation $f(x)=0$, where $f \in C^{1}\left(\mathbb{R}^{n+1}\right)$ has no critical points on M, i.e. $\left.f^{\prime}\right|_{p} \neq 0$ for each point $p \in M$.
Prove: M is a smooth orientable hypersurface.
b. (20 points) Let $M \subset \mathbb{R}^{n+1}$ be a smooth orientable hypersurface. Prove: M can be defined by the equation $f(x)=0$, where $f \in C^{1}(\mathcal{U})$ (for some neighborhood $M \subset \mathcal{U} \subset \mathbb{R}^{n+1}$) has no critical points on M.

