Geometric Calculus 2, 201.1.1041 Moed A, 05.07.2022, three hours. (Lecturer: Dmitry Kerner) No auxiliary material is allowed. Solve all the questions. The total is 104 points. Do not write in red color!

- **1.** a. (7 points) Prove: if M is a path-connected manifold then the dimension of the germ dim(M,p) does not depend on the point $p \in M$.
 - **b.** (11 points) Take a manifold with two charts, $M = U_1 \cup U_2$. Suppose the set $U_1 \cap U_2$ is path-connected. Prove: M is orientable.
- **2.** a. (7 points) A form $\omega \in \bigwedge^2 V^*$ is called non-degenerate if for each $v \in V$ exists $u \in V$ such that $\omega(v, u) \neq 0$. Prove: if $\dim(V)$ is odd then every 2-form is degenerate.
 - **b.** (11 points) A vector field ξ on \mathbb{R}^N is called tangent to a submanifold $M \subset \mathbb{R}^N$ if $\xi|_p \in T_p M$ for each point $p \in M$. Suppose $M \subset \mathbb{R}^N$ is defined by the equation $f(\underline{x}) = 0$, with $grad(f)|_p \neq 0$ for each $p \in M$. Prove: ξ is tangent to M iff $\xi(f)|_M = 0$.
 - c. (7 points) Express the form $\omega = g(||x||) \cdot \sum x_i dx^i \in \Omega^1(\mathbb{R}^3 \setminus (0,0,0))$ in the polar coordinates. (Hint: no long computations.)
 - **d.** (11 points) Given a smooth map $\phi : M \to \tilde{M}$ and forms $\omega_1, \omega_2 \in \Omega^1(\tilde{M})$ prove: $\phi^*(\omega_1 \land \omega_2) = \phi^*(\omega_1) \land \phi^*(\omega_2)$.
- **3.** (20 points) Compute $\int_C \frac{-ydx+xdy}{x^2+y^2}$, where $C \subset \mathbb{R}^2$ is defined by $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and is oriented counterclockwise.
- **4.** a. (10 points) A subset $M \subset \mathbb{R}^{n+1}$ is defined by the equation f(x) = 0, where $f \in C^1(\mathbb{R}^{n+1})$ has no critical points on M, i.e. $f'|_p \neq 0$ for each point $p \in M$. Prove: M is a smooth orientable hypersurface.
 - **b.** (20 points) Let $M \subset \mathbb{R}^{n+1}$ be a smooth orientable hypersurface. Prove: M can be defined by the equation f(x) = 0, where $f \in C^1(\mathcal{U})$ (for some neighborhood $M \subset \mathcal{U} \subset \mathbb{R}^{n+1}$) has no critical points on M.

Good Luck!