1. a. (10 points) Take an embedding of manifolds $M \stackrel{\psi}{\hookrightarrow} \tilde{M}$. Prove: the corresponding pusforward of vector fields, ψ_{*}, is injective.
b. (10 points) Take a finite dimensional vector space V. Take a skew-symmetric form $\omega \in \stackrel{k}{\Lambda} V^{*}$, where k is odd. Prove: $\omega \wedge \omega=0$.
c. (10 points) Let M be an orientable path-connected manifold. Prove: M has exactly two (distinct) orientations.
2. a. (17 points) A subset $M \subset \mathbb{R}^{n+r}$ is defined by the equations $g_{1}(x)=0=\cdots=g_{r}(x)$ for some functions $g_{1}, \ldots, g_{r} \in C^{1}\left(\mathbb{R}^{n+r}\right)$. Suppose the forms $d g_{1}, \ldots, d g_{r} \in \Omega^{1}\left(\mathbb{R}^{n+r}\right)$ are linearly independent at each point of M. Take a function $f \in C^{1}\left(\mathbb{R}^{n+r}\right)$. Prove: if the restriction $\left.f\right|_{M}$ has a local extremum at a point $p \in M$ then $\left.\left(d f \wedge d g_{1} \wedge \cdots \wedge d g_{r}\right)\right|_{p}=0$.
b. (20 points) Fix a manifold M. Prove: for any discrete subset $X \subset M$ there exists a function $f \in C^{1}(M)$ satisfying: $\left.f\right|_{M \backslash X}>0,\left.f\right|_{X}=0$, and f has a non-degenerate minimum at each point $p \in X$. (Namely, in some local coordinates $\left.f^{\prime}\right|_{p}=0$ and $\left.f^{\prime \prime}\right|_{p}$ is non-degenerate.)
3. a. (17 points) Let M be an oriented compact manifold without boundary, $\operatorname{dim}(M)=n$. Let $\omega \in \Omega^{n-1}(M)$ be continuously differentiable. Compute $\int_{M} d \omega$.
b. (20 points) Take the standard sphere $S^{2} \subset \mathbb{R}^{3}$ with the orientation corresponding to the inner normal. Let $\omega=\left.z d x \wedge d y\right|_{S^{2}} \in \Omega^{2}\left(S^{2}\right)$. Compute $\int_{S^{2}} \omega$.

