Geometric Calculus 2, 201.1.1041 Moed C, 4.09.2022, three hours. (Lecturer: Dmitry Kerner) No auxiliary material is allowed. Solve all the questions. The total is 104 points. Do not write in red color!

- **1.** a. (10 points) Take a partition of unity $\sum \rho_{\beta} = 1$ on a manifold M, and a compact subset $X \subseteq M$. Prove: $X \cap supp(\rho_{\beta}) = \emptyset$ except for a finite set of β 's.
 - **b.** (10 points) Prove: vectors $v_1, \ldots, v_k \in V$ are linearly dependent iff $\omega(v_1, \ldots, v_k) = 0$ for any form $\omega \in \bigwedge^k V^*$.
 - **c.** (10 points) A curve $C \subset \mathbb{R}^2$ is defined via a (C^1) parametrization in polar coordinates, $r = r(\theta)$. Prove: $\int_C f dC = \int_{\theta_0}^{\theta_1} f \cdot \sqrt{(\partial_\theta r)^2 + r^2} d\theta$.

- **2.** a. (18 points) Let $M \subset \mathbb{R}^n$ be a submanifold with boundary. Prove: $\partial M \subset \mathbb{R}^n$ is a submanifold without boundary, i.e. $\partial \partial M = \emptyset$.
 - **b.** (18 points) Take a C^{∞} -manifold M and a closed subset $X \subset M$. Take a function $f \in C^{\infty}(M \setminus X)$ satisfying: $\lim_{x \to x_o} f^{(k)}|_x = 0$ for each $x_o \in \partial X$ and all $k \ge 0$. Prove: f extends to a C^{∞} -function on M. When is the extension unique?

- **3.** a. (19 points) For an embedded manifold $M \subset \mathbb{R}^N$ and an integer $0 \leq k < \infty$ prove: the restriction map $\Omega^k(\mathbb{R}^N) \to \Omega^k(M)$ is surjective.
 - **b.** (19 points) Given an open bounded set $\mathcal{U} \subset \mathbb{R}^n$, suppose $\partial \overline{\mathcal{U}}$ is a compact manifold. Take the form $\omega = \sum c_i x_i dx_1 \wedge \cdots \wedge dx_i \wedge \cdots dx_n \in \Omega^{n-1}(\mathbb{R}^n)$, where the constant $\{c_i\}$ satisfy $c_i^2 = 1$. Find $\{c_i\}$ that satisfy the identity $vol_n(\mathcal{U}) = \frac{1}{n} \int_{\partial \mathcal{U}} \omega$.

Good Luck!