Geometric Calculus 2, 201.1.1041 Homework 1

Spring 2022 (D.Kerner) Questions to submit: 1. 2.b. 3.b. 3.f. 4.a. 6.b. 6.d.

- 1. Suppose $(\mathbb{R}^n, o) \xrightarrow{f} (\mathbb{R}^N, o)$ is C^1 and $rank[f'|_o] = k$. Prove: $rank[f'|_x] \ge k$ for x close to o. (Namely: for any representative $\mathcal{U} \xrightarrow{f} \mathbb{R}^N$ there exists an open neighborhood $o \in \tilde{\mathcal{U}} \subseteq \mathcal{U}$ such that ...)
- 2. Take a a C^r -function $(r \ge 1)$: $\mathbb{R}^n \supseteq \mathcal{U} \xrightarrow{f} \mathbb{R}^m$. Prove (using the implicit function theorem):
 - a. (The normal form of a submersion, $m \leq n$) If $rank[f'|_p] = m$, then in some local (C^r) coordinates at $p \in \mathcal{U}$ (and the standard coordinates in \mathbb{R}^m) the function is: $f(\underline{x}) = f(p) + (x_1, \ldots, x_m)$.
 - b. (The normal form of an immersion, $m \ge n$) If $rank[f'|_p] = n$, then in some local (C^r) coordinates at $f(p) \in \mathbb{R}^m$ (and the standard coordinates in \mathbb{R}^n) the function is: $f(\underline{x}) = (x_1 f_1(p), \dots, x_n f_n(p), 0, \dots, 0)$.
 - c. Deduce the open mapping theorem: if $\mathbb{R}^n \supseteq \mathcal{U} \xrightarrow{f} \mathbb{R}^m$ is C^1 , $m \leq n$, and rank[f'] = m everywhere on \mathcal{U} then f sends open sets to open sets.
 - d. Let $\mathbb{R}^n \supseteq \mathcal{U} \xrightarrow{\phi} \tilde{\mathcal{U}} \subseteq \mathbb{R}^{\tilde{n}}$ be a C^1 -diffeomorphism of open subsets. Prove: $n = \tilde{n}$.
 - e. Suppose a subset $X \subset \mathbb{R}^n$ is defined by the equation $f(\underline{x}) = 0$. Suppose $\nabla(f)|_{x_o} \neq 0$. Prove: the tangent plane $T_{x_o}X \subset \mathbb{R}^n$ at a point $x_o \in X$ is defined by the equation $(\underline{x} \underline{x}_o) \cdot \nabla(f)|_{x_o} = 0$. Extend this to the case of several equations.
- 3. a. We have defined the germs (X, x_o) , f_{x_o} via an equivalence relation. Verify that this is indeed an equivalence relation.
 - b. Prove: any (non-empty) open subgerm of (\mathbb{R}^n, o) coincides with the germ $(Ball_{\epsilon}(o), o)$.
 - c. Take the germ of a function $(\mathbb{R}^n, o) \xrightarrow{f_o} \mathbb{R}^1$. Write the full definition for the condition $f_o \geq 0$.
 - d. Define the basic operations for a finite number of germs: $\cap_i(X_i, o) := (\cap_i X_i, o), \quad \cup_i(X, o) := (\cup_i X_i, o), \quad (X, o) \setminus (Y, o) := (X \setminus Y, o), \quad \prod_i (X_i, 0) := (\prod_i X_i, o).$ Verify: the results are well defined, i.e. do not depend on the choice of representatives. What happens in the infinite case?
 - e. Define the basic operations on (a finite number of) function germs: $\sum_i (f_i)_p := (\sum_i f_i)_p$, $\prod_i (f_i)_p := (\prod_i f_i)_p$. Verify: the results are well defined.
 - f. Let $0 \leq r \leq \infty$. Denote by $C^r(\mathbb{R}^p, o)$ the set of germs of C^r -functions. Verify: the derivatives at the origin, $f^{(j)}|_o$, $j = 0, \ldots, r$, are well defined, i.e. do not depend on the choice of a representative of f. The set $C^r(\mathbb{R}^p, o)$ is a commutative, unital ring.
- 4. Prove: the following sets are C[∞]-manifolds. Identify these manifolds, e.g. X₂ ≅ S¹×S¹ (a C[∞]-diffeomorphism).
 a. X_n = {(x, y)| ||x|| = ||y|| = 1} ⊂ ℝⁿ × ℝⁿ.
 b. {(x, y, z)| x² + y² = 0, x² + y² + z² = 2x} ⊂ ℝ³.
 - c. $\{(x_1, \ldots, x_4) | \|x\| = 1, x_1x_2 + x_3x_4 = 0\} \subset \mathbb{R}^4$.
- 5. Fix a(ny) norm on $Mat_{n\times n}(\mathbb{R})$, and identify $Mat_{n\times n}(\mathbb{R}) \cong \mathbb{R}^{n^2}$. Prove: the subsets $SO(n, \mathbb{R}), SL(n, \mathbb{R}) \subset O(n, \mathbb{R}) \subset GL(n, \mathbb{R}) \subset Mat_{n\times n}(\mathbb{R})$ are C^{∞} -manifolds. Determine their dimensions. Which of these are compact/path-connected?
- 6. a. Prove: $(C, o) = \{(x, y) | y = |x|\} \subset (\mathbb{R}^2, o)$ is not the germ of a C^1 -manifold. Prove: $\mathbb{R}^1 \ni t \to (t^7, |t|^7) \in \mathbb{R}^2$ is a C^6 -parametrization of C. Any contradiction?
 - b. Prove: the germ $(C, o) = \{(x, y) | x \cdot y = 0\} \subset (\mathbb{R}^2, o)$ is not the germ of a C^0 -manifold. (i.e. (C, o) is not homeomorphic to (\mathbb{R}^n, o) for any n.)
 - c. Define the curve $C \subset \mathbb{R}^2$ by the parametrization $\mathbb{R}^1 \ni t \to (t^3, t^5) \in \mathbb{R}^2$. Prove: C is a C^1 manifold, but not a C^2 -manifold. Give an (explicit) non-degenerate C^1 -parametrization of C.
 - d. For each $r \ge 1$ give an example of C^r -manifold that is not a C^{r+1} -manifold.
 - e. Prove: the dimension of a path-connected manifold is well defined. (i.e. $dim_p M$ does not depend on p)