Geometric Calculus 2, 201.1.1041 Homework 10

Spring 2022 (D.Kerner)

Questions to submit: 1.c. 1.d. 1.f. 1.g. 3.b. 4.a. 4.b. 4.c. 4.f. 4.g.

Below $\mathcal{U} \subseteq \mathbb{R}^n$ is an open subset with the standard coordinates of \mathbb{R}^n .

- ∂M always denotes the manifold-boundary (not the boundary in the sense of the topology on \mathbb{R}^N)
 - 1. a. In the class we have associated to a vector field \vec{F} on M the form $\omega_{\vec{F}}^{n-1} \in \Omega^{n-1}(M)$. For $M = \mathcal{U}$ and

 $\vec{F} = \sum F_i \frac{\partial}{\partial x^i}$ on \mathcal{U} write this form explicitly.

- b. Associate to a vector field $\vec{F} = \sum F_i \frac{\partial}{\partial x_i}$ the 1-form $\omega_{\vec{F}}^1 := \sum F_i \cdot dx^i$. Verify: $\omega_{grad(f)}^1 = df$. c. Associate to a scalar function $f \in C^r(\mathcal{U})$ the *n*-form $\omega_f^n := f \cdot dx^1 \wedge \dots \wedge dx^n$. For $\mathcal{U} \subseteq \mathbb{R}^3$ verify: i. $\omega_{\vec{F} \times \vec{G}}^2 = \omega_{\vec{F}}^1 \wedge \omega_{\vec{G}}^1$ ii. $\omega_{\vec{F}}^2 \wedge \omega_{\vec{G}}^1 = \omega_{\vec{F} \cdot \vec{G}}^3$ iii. $\omega_{rot(\vec{F})}^2 = d\omega_{\vec{F}}^1$ iv. $\omega_{div(\vec{F})}^3 = d\omega_{\vec{F}}^2$.
- d. Verify: the flux of \vec{F} through a smooth oriented surface $M \subset \mathbb{R}^3$ equals to $\int_{\vec{S}} \omega_{\vec{F}}^2$.
- e. Take a smooth hypersurface-germ $(M, p) \subset (\mathbb{R}^{n+1}, p)$. Fix some linearly independent vectors $v_1 \dots v_n \in$ T_pM . Define the form $\omega_{v_1...v_n} \in T_p^* \mathbb{R}^{n+1}$ by $\omega_{v_1...v_n}(v) = det[v, v_1, \ldots, v_n]$. Prove: $\omega_{v_1...v_n}$, when presented in the canonical basis of \mathbb{R}^{n+1} , gives the normal \vec{n}_p to M at p.
- f. Prove: for a smooth hypersurface $M \subset \mathbb{R}^{n+1}$ (with no prescribed orientation) choosing the volume form is equivalent to choosing the unit normal.
- g. Let $M \subset \mathbb{R}^{n+1}$ be a smooth orientable hypersurface. Prove: M can be defined as $\{f = 0\}$, where f has no critical points on M.
- 2. We have defined $\int_M \omega$ via the splitting $M \setminus X_{\leq n-1} = \coprod M_i$. Given some charts on a manifold, $M = \cup \mathcal{U}_\alpha$, and a corresponding partition of unity, $\sum \rho_\alpha = 1$, verify: $\int_M \omega = \sum_\alpha \int_{\mathcal{U}_{\alpha,x}} \phi_\alpha^*(\rho_\alpha \omega)$.

In particular, the right hand side is independent of the choice of charts and the choice of the partition.

- 3. We have defined (non-embedded) manifolds with boundary. A subset $M \subset \mathbb{R}^N$ is called a (C^r) submanifold with boundary if the germ (\mathbb{R}^N, M, p) is C^r -diffeomorphic to the germ (\mathbb{R}^N, H, q) for each point $p \in M$ and a corresponding point $q \in H$.
 - a. Prove: in this case ∂M is a submanifold of \mathbb{R}^N , with $\partial(\partial M) = \emptyset$.
 - In particular, solid boxes/polytopes in $\mathbb{R}^{n>1}$ are not submanifolds with boundary.
 - b. Take $\mathcal{U} \subset \mathbb{R}^n$ with the standard orientation. Which orientation is induced on $\partial \overline{\mathcal{U}}$? (Is the normal to $\partial \overline{\mathcal{U}}$) outer or inner?)
 - c. Take $S_{+}^{n} := S^{n} \cap \{x_{1} \geq 0\}$. What is the induced orientation on ∂S_{+}^{n} ?
 - d. Find (many) mistakes (give counterexamples) in the statement: for an open $\mathcal{U} \subset \mathbb{R}^n$ the boundary is a manifold of dimension (n-1), with $\partial(\partial \mathcal{U}) = \emptyset$, and with the orientation naturally induced from \mathcal{U} .
- 4. a. Let $\mathcal{U} \subset \mathbb{R}^3$ be an open convex bounded set. Suppose $(\partial \bar{\mathcal{U}}) \setminus X_{\leq 1}$ is smooth. Take $\omega = f_x dy \wedge dz + f_y dz \wedge dx + f_z dx \wedge dy|_{\partial \bar{\mathcal{U}}}$, where f_i is independent of x_i . Prove: $\int_{\partial \bar{\mathcal{U}}} \omega = 0$.
 - b. Compute $\int_S \omega$ for $S \subset \mathbb{R}^n$ defined by $\sum \frac{x_i^2}{a_i^2} = 1$ (with the outer normal) and $\omega = \frac{\sum (-1)^i x_i dx^1 \wedge \dots \wedge dx^i}{\|x\|^n}$ c. For a smooth surface with boundary $S \subset \mathbb{R}^N$ and $\omega = g(\|x\|) \cdot \sum x_i dx^i|_S \in \Omega^1(S)$ with $g \in C^1$, prove: $\int_{\partial S} \omega = 0$.

 - d. (Integration by parts in a multiple integral) Suppose $\overline{\mathcal{U}} \subset \mathbb{R}^n$ is compact, and its boundary $S := \partial \overline{\mathcal{U}}$ is piecewise smooth, with the outer unit normal \hat{n} . Prove: $\int_{\bar{\mathcal{U}}} (\partial_i f) \cdot g \cdot d\bar{\mathcal{U}} = \int_S f \cdot g \cdot \hat{n}_i \cdot d\bar{S} - \int_{\bar{\mathcal{U}}} f \cdot (\partial_i g) \cdot d\bar{\mathcal{U}}$. e. For a body $\bar{\mathcal{U}} \subset \mathbb{R}^3$ obtain the formula $vol_3(\bar{\mathcal{U}}) = \frac{1}{3} \int_{\partial \bar{\mathcal{U}}} x dy \wedge dz + y dz \wedge dx + z dx \wedge dy$.

 - f. Find the smooth, closed oriented curve C for which the integral $\oint_C (\frac{x^2y}{4} + \frac{y^3}{3})dx + xdy$ achieves maximum.
 - g. Suppose $\bar{\mathcal{U}} \subset \mathbb{R}^2$ is compact and $\partial \bar{\mathcal{U}}$ is piecewise smooth and positively oriented. Prove: $vol_2(\bar{\mathcal{U}}) =$ $\oint_{\partial \bar{\mathcal{U}}} x dy = - \oint_{\partial \bar{\mathcal{U}}} y dx.$ Use this formula to compute the area bounded by the curve $|\frac{x}{a}|^{\frac{2}{p}} + |\frac{y}{b}|^{\frac{2}{p}} = 1.$ $\partial \overline{\mathcal{U}}$