Geometric Calculus 2, 201.1.1041 Homework 2

Spring 2022 (D.Kerner) Questions to submit: 1. 2.a. 2.b. 2.d. 3.b. 5.b. 6.c.

- 1. For a manifold-germ $(M, o) \subset (\mathbb{R}^N, o)$ and a parameterized curve germ $(\mathbb{R}^1, o) \ni t \to x(t) \in (M, o)$ take the velocity $\frac{dx(t)}{dt}|_{t=o} \in \mathbb{R}^N$. Prove: $T_o M$ is the union of such velocity vectors over all the curve germs.
- 2. Define the standard sphere $S^n \subset \mathbb{R}^{n+1}$ by the equation $||\underline{x}|| = 1$. Define the projections:

 $S^n \setminus \{\hat{x}_{n+1}\} =: \mathcal{U}_- \ni \underline{x} \xrightarrow{\phi_-} \frac{(x_1, \dots, x_n, 0)}{1 - x_{n+1}} \in \mathbb{R}^n_-, \qquad S^n \setminus \{-\hat{x}_{n+1}\} =: \mathcal{U}_+ \ni \underline{x} \xrightarrow{\phi_+} \frac{(x_1, \dots, x_n, 0)}{1 + x_{n+1}} \in \mathbb{R}^n_+.$

- a. Determine the geometric meaning of this projections. In particular: i. Verify the injectivity. ii. What are the limits $\lim_{x \to \hat{x}_{n+1}} \phi_{-}(x)$, $\lim_{x \to -\hat{x}_{n+1}} \phi_{+}(x)$? iii. Describe the b. Verify: the map $\mathbb{R}^{n}_{+} \setminus \{o\} \xrightarrow{\phi_{-} \circ (\phi_{+})^{-1}} \mathbb{R}^{n}_{-} \setminus \{o\}$ is given by $\underline{y} \to \frac{\underline{y}}{\|\underline{y}\|^{2}}$. iii. Describe the closures $\overline{\phi_{-}(\mathcal{U}_{-})} \subseteq \mathbb{R}^{n}_{-}, \overline{\phi_{+}(\mathcal{U}_{+})} \subseteq \mathbb{R}^{n}_{-}.$
- c. Show that the charts $(\mathcal{U}_{-}, \phi_{-}), (\mathcal{U}_{+}, \phi_{+})$ form a C^{∞} -atlas on $\bar{S^{n}}$.
- d. Prove: every C^0 -atlas on S^n must have at least two charts.
- 3. a. A torus in \mathbb{R}^3 with radii $0 < r < R < \infty$ is obtained by rotating the circle $(x R)^2 + z^2 = r^2$ around the \hat{z} -axis. Write the defining equation of the torus. Write the parametrization of the torus. What is the minimal number of C^1 -charts for this torus?
 - b. Let M be a compact C^1 -manifold of dimension n. Prove: M is non-embeddable into \mathbb{R}^n .
- 4. Take all the balls in \mathbb{R}^n centered at the points of $\mathbb{Q}^n \subset \mathbb{R}^n$, and with radii belonging to the sequence $\{\frac{1}{m_k}\}_{k\in\mathbb{N}}$, where p_k is the k'th prime number. Prove: this is a base for the standard topology on \mathbb{R}^n .
- 5. Fix a topological space (X, \mathcal{T}_X) .
 - ii. Any intersection of closed subsets of X is a closed subset. a. Prove: i. \emptyset, X are closed subsets. iii. Any finite union of closed subsets of X is a closed subset.
 - b. For a subset $Y \subset X$ take the induced topology, $\mathcal{T}_Y = \mathcal{T}_X|_Y$. Take a subset $Z \subset Y \subset X$. (Dis)prove: i. Z is closed in Y iff Z is closed in X. ii. Z is open in Y iff Z is open in X. iii. (for the closures) $\overline{Z}^{(Y)} = \overline{Z}^{(X)}$. iv. (for the interiors) $Int_Y(Z) = Int_X(Z) \cap Y$.
- 6. Fix a topological space X, Hausdorff and with a countable base. Consider various C^{r} -atlases on X.
 - a. Prove: every atlas is contained in a (unique) maximal (w.r.t. inclusion) atlas.
 - b. Prove: two atlases on X are compatible iff they have the same maximal atlas.
 - c. Take an atlas $\{\mathcal{U}_{\alpha}, \phi_{\alpha}\}$ on X and two other charts, $(\mathcal{V}_1, \psi_1), (\mathcal{V}_2, \psi_2)$, not from this atlas. Suppose for each point $x \in \mathcal{V}_1 \cap \mathcal{V}_2$ exists a chart $x \in \mathcal{U}_\alpha \subseteq X$ that is compatible with \mathcal{V}_1 and \mathcal{V}_2 . Prove: the charts $\mathcal{V}_1, \mathcal{V}_2$ are compatible.
 - d. Suppose X admits a C^0 -atlas A with just one chart. Prove: (X, \mathcal{A}) is a C^{∞} -manifold which is C^{∞} diffeomorphic to an open subset of \mathbb{R}^n .