Geometric Calculus 2, 201.1.1041
 Homework 2
 Spring 2022 (D.Kerner)
 Questions to submit: 1. 2.a. 2.b. 2.d. 3.b. 5.b. 6.c.

1. For a manifold-germ $(M, o) \subset\left(\mathbb{R}^{N}, o\right)$ and a parameterized curve germ $\left(\mathbb{R}^{1}, o\right) \ni t \rightarrow x(t) \in(M, o)$ take the velocity $\left.\frac{d x(t)}{d t}\right|_{t=o} \in \mathbb{R}^{N}$. Prove: $T_{o} M$ is the union of such velocity vectors over all the curve germs.
2. Define the standard sphere $S^{n} \subset \mathbb{R}^{n+1}$ by the equation $\|\underline{x}\|=1$. Define the projections:
$S^{n} \backslash\left\{\hat{x}_{n+1}\right\}=: \mathcal{U}_{-} \ni \underline{x} \xrightarrow{\phi_{-}} \frac{\left(x_{1}, \ldots, x_{n}, 0\right)}{1-x_{n+1}} \in \mathbb{R}_{-}^{n}, \quad S^{n} \backslash\left\{-\hat{x}_{n+1}\right\}=: \mathcal{U}_{+} \ni \underline{x} \xrightarrow{\phi_{+}} \xrightarrow{\left(x_{1}, \ldots, x_{n}, 0\right)} \underset{1+x_{n+1}}{\mathbb{R}_{+}^{n}}$.
a. Determine the geometric meaning of this projections. In particular: i. Verify the injectivity.
ii. What are the limits $\lim _{x \rightarrow \hat{x}_{n+1}} \phi_{-}(x), \lim _{x \rightarrow-\hat{x}_{n+1}} \phi_{+}(x)$? iii. Describe the closures $\overline{\phi_{-}\left(\mathcal{U}_{-}\right)} \subseteq \mathbb{R}_{-}^{n}, \overline{\phi_{+}\left(\mathcal{U}_{+}\right)} \subseteq \mathbb{R}_{-}^{n}$.
b. Verify: the map $\mathbb{R}_{+}^{n} \backslash\{o\} \xrightarrow{\phi_{-} \circ\left(\phi_{+}\right)^{-1}} \mathbb{R}_{-}^{n} \backslash\{o\}$ is given by $\underline{y} \rightarrow \frac{y}{\|\underline{y}\|^{2}}$.
c. Show that the charts $\left(\mathcal{U}_{-}, \phi_{-}\right),\left(\mathcal{U}_{+}, \phi_{+}\right)$form a C^{∞}-atlas on S^{n}.
d. Prove: every C^{0}-atlas on S^{n} must have at least two charts.
3. a. A torus in \mathbb{R}^{3} with radii $0<r<R<\infty$ is obtained by rotating the circle $(x-R)^{2}+z^{2}=r^{2}$ around the \hat{z}-axis. Write the defining equation of the torus. Write the parametrization of the torus. What is the minimal number of C^{1}-charts for this torus?
b. Let M be a compact C^{1}-manifold of dimension n. Prove: M is non-embeddable into \mathbb{R}^{n}.
4. Take all the balls in \mathbb{R}^{n} centered at the points of $\mathbb{Q}^{n} \subset \mathbb{R}^{n}$, and with radii belonging to the sequence $\left\{\frac{1}{p_{k}}\right\}_{k \in \mathbb{N}}$, where p_{k} is the k 'th prime number. Prove: this is a base for the standard topology on \mathbb{R}^{n}.
5. Fix a topological space $\left(X, \mathcal{T}_{X}\right)$.
a. Prove: i. \varnothing, X are closed subsets. ii. Any intersection of closed subsets of X is a closed subset. iii. Any finite union of closed subsets of X is a closed subset.
b. For a subset $Y \subset X$ take the induced topology, $\mathcal{T}_{Y}=\left.\mathcal{T}_{X}\right|_{Y}$. Take a subset $Z \subset Y \subset X$. (Dis)prove:
i. Z is closed in Y iff Z is closed in X. ii. Z is open in Y iff Z is open in X.
iii. (for the closures) $\bar{Z}^{(Y)}=\bar{Z}^{(X)}$. iv. (for the interiors) $\operatorname{Int}_{Y}(Z)=\operatorname{Int}_{X}(Z) \cap Y$.
6. Fix a topological space X, Hausdorff and with a countable base. Consider various C^{r}-atlases on X.
a. Prove: every atlas is contained in a (unique) maximal (w.r.t. inclusion) atlas.
b. Prove: two atlases on X are compatible iff they have the same maximal atlas.
c. Take an atlas $\left\{\mathcal{U}_{\alpha}, \phi_{\alpha}\right\}$ on X and two other charts, $\left(\mathcal{V}_{1}, \psi_{1}\right),\left(\mathcal{V}_{2}, \psi_{2}\right)$, not from this atlas. Suppose for each point $x \in \mathcal{V}_{1} \cap \mathcal{V}_{2}$ exists a chart $x \in \mathcal{U}_{\alpha} \subseteq X$ that is compatible with \mathcal{V}_{1} and \mathcal{V}_{2}. Prove: the charts $\mathcal{V}_{1}, \mathcal{V}_{2}$ are compatible.
d. Suppose X admits a C^{0}-atlas \mathcal{A} with just one chart. Prove: (X, \mathcal{A}) is a C^{∞}-manifold which is $C^{\infty}{ }_{-}$ diffeomorphic to an open subset of \mathbb{R}^{n}.
