Geometric Calculus 2, 201.1.1041 Homework 4

Spring 2022 (D.Kerner) Questions to submit: 2.a. 2.b. 2.d.ii. 2.e. 3.d. 4.c. 4.d. 4.e.

Below M is a C^r-manifold, $1 \leq r \leq \infty$, dim(M) = n, with coordinate charts $M = \bigcup (\mathcal{U}_{\alpha}, \phi_{\alpha})$.

- 1. Take a C^{∞} -manifold M and a closed subset $X \subset M$. Take a function $f \in C^{\infty}(M \setminus X)$ satisfying: $\lim_{k \to \infty} f^{(k)}(x) = 0$ for each $x_o \in \partial X$ and all $k \ge 0$. Prove: f extends to $C^{\infty}(M)$. When is the extension unique?
- 2. A group G is called "a Lie group" if it is a C^1 -manifold and the group operations (the product and the inverse) are C^1 -maps.
 - a. You have proved in homework.1 that the groups $GL(n,\mathbb{R})$, $SL(n,\mathbb{R})$, $O(n,\mathbb{R})$, $SO(n,\mathbb{R})$ are C^{∞} submanifolds of $Mat_{n \times n}(\mathbb{R})$. Verify: these are Lie groups.
 - b. Compute the total derivative for the following maps:

i. The inverse map $GL(n, \mathbb{R}) \ni A \xrightarrow{\phi} A^{-1} \in GL(n, \mathbb{R})$. ii. The k-th power map $Mat_{n \times n}(\mathbb{R}) \ni A \xrightarrow{\phi} A^k \in Mat_{n \times n}(\mathbb{R})$. (Express the answer as a linear form, do not try to write down the partial derivatives.) c. Establish the C^{∞} -diffeomorphisms:

- ii. $SL(2,\mathbb{R}) \cong \{(x,y,z,w) | x^2 + y^2 = 1 + z^2 + w^2\} \subset \mathbb{R}^4.$ i. $SO(2) \cong S^1$, $O(2) \cong S^1 \coprod S^1$. d. Prove the following identifications of the tangent spaces at the unit matrix, $T_1G \subseteq Mat_{n \times n}(\mathbb{R})$:
- i. $\mathfrak{gl}(n,\mathbb{R}) := T_{\mathbb{I}}GL(n,\mathbb{R}) = Mat_{n \times n}(\mathbb{R})$ ii. $\mathfrak{sl}(n,\mathbb{R}) := T_{\mathbf{I}}SL(n,\mathbb{R}) = (\text{matrices with zero trace})$ iii. $\mathfrak{so}(n, \mathbb{R}) := T_{\mathbf{I}}SO(n, \mathbb{R}) = (\text{skew-symmetric matrices})$ iv. $o(n, \mathbb{R}) := T_{\mathbf{I}}O(n, \mathbb{R}) = T_{\mathbf{I}}SO(n, \mathbb{R}).$ e. Compute the action of the linear form ϕ' from part b. on these tangent spaces.
- f. A vector subspace $V \subseteq Mat_{n \times n}(\mathbb{R})$ is called "a Lie algebra" if it is closed under the commutator, i.e.
- $[A,B] := AB BA \in V$ for all $A, B \in V$. Prove: $\mathfrak{gl}(n,\mathbb{R}), \mathfrak{sl}(n,\mathbb{R}), \mathfrak{so}(n,\mathbb{R})$ are Lie algebras.
- 3. Introduce equivalence relation on $\mathbb{R}^{n+1} \setminus \{o\}$ by: $v \sim w$ if $v \in \mathbb{R} \cdot w$. The real projective space \mathbb{RP}^n is the set of equivalence classes. Take the natural projection $\psi : \mathbb{R}^{n+1} \setminus \{o\} \to \mathbb{RP}^n$. The points of \mathbb{RP}^n are denoted by $(x_0 : \cdots : x_n)$ (defined up to scaling). Here x_0, \ldots, x_n are called "the homogeneous coordinates".
 - a. As the open sets on \mathbb{RP}^n one takes the ψ -images of the opens in $\mathbb{R}^{n+1} \setminus \{o\}$. Verify: this is a topology. b. Take the charts $\mathcal{U}_j = \{(x_0 : \cdots : x_n) | x_j \neq 0\} \subset \mathbb{RP}^n$ with the coordinate maps

$$\mathcal{U}_j \ni (x_0 : \dots : x_n) \xrightarrow{\phi_j} (\frac{x_0}{x_j}, \dots, \frac{x_{j-1}}{x_j}, \frac{x_{j+1}}{x_j}, \dots, \frac{x_n}{x_j}) \in \mathbb{R}^n.$$

Verify: these maps are well defined homeomorphisms. Write down the transition functions. Conclude: \mathbb{RP}^n is a C^{∞} -manifold.

c. Prove: $\psi : \mathbb{R}^{n+1} \setminus \{o\} \to \mathbb{RP}^n$ is a C^{∞} -map of manifolds, and it factorizes as $\mathbb{R}^{n+1} \setminus \{o\} \to S^n \xrightarrow{2:1} \mathbb{RP}^n$. d. Prove: $\mathbb{RP}^1 \cong S^1$.

- e. Can you construct \mathbb{RP}^2 topologically by gluing the A4-page? (As with Möbius strip and Klein bottle).
- 4. a. Given a vector field ξ on M and a function $f \in C^1(M)$ verify: $\xi(f)$ is a well defined function.
 - b. Prove the Leibnitz rule: $\xi(f \cdot g) = \cdots$.

 - c. Which of the following vector fields on R¹ are related by coordinate changes: 2sin(x) d/dx, sin²(x) d/dx, sin(2x) d/dx.
 d. Express the vector fields ∂/∂x, ∂/∂y on R² in the polar coordinates. Express the vector fields ∂/∂r, ∂/∂φ in the cartesian coordinates. Compute the commutator [∂/∂r, ∂/∂φ].
 - e. Take the "stereographic" covering $S^1 = \mathbb{R}^1_+ \cup \mathbb{R}^1_-$, with coordinates x, y. Write the pushforward (transition) map for vector fields from \mathbb{R}^1_+ to \mathbb{R}^1_- . Prove: if a vector field is polynomial in both charts then the degree of this polynomial is ≤ 2 .
 - f. Prove: any C^r -vector field on $S^{\overline{1}}$ is presentable as $c(\phi)\frac{\partial}{\partial\phi}$ for some $c \in C^r(S^1)$.