Geometric Calculus 2, 201.1.1041 Homework 4

Spring 2022 (D.Kerner)
Questions to submit: 2.a. 2.b. 2.d.ii. 2.e. 3.d. 4.c. 4.d. 4.e.

Below M is a C^{r}-manifold, $1 \leq r \leq \infty, \operatorname{dim}(M)=n$, with coordinate charts $M=\cup\left(\mathcal{U}_{\alpha}, \phi_{\alpha}\right)$.

1. Take a C^{∞}-manifold M and a closed subset $X \subset M$. Take a function $f \in C^{\infty}(M \backslash X)$ satisfying: $\lim _{x \rightarrow x_{o}} f^{(k)}(x)=0$ for each $x_{o} \in \partial X$ and all $k \geq 0$. Prove: f extends to $C^{\infty}(M)$. When is the extension unique?
2. A group G is called "a Lie group" if it is a C^{1}-manifold and the group operations (the product and the inverse) are C^{1}-maps.
a. You have proved in homework. 1 that the groups $G L(n, \mathbb{R}), S L(n, \mathbb{R}), O(n, \mathbb{R}), S O(n, \mathbb{R})$ are C^{∞} submanifolds of $M a t_{n \times n}(\mathbb{R})$. Verify: these are Lie groups.
b. Compute the total derivative for the following maps:
i. The inverse map $G L(n, \mathbb{R}) \ni A \xrightarrow{\phi} A^{-1} \in G L(n, \mathbb{R})$. ii. The k-th power map $\operatorname{Mat}_{n \times n}(\mathbb{R}) \ni A \xrightarrow{\phi} A^{k} \in$ $M a t_{n \times n}(\mathbb{R})$. (Express the answer as a linear form, do not try to write down the partial derivatives.)
c. Establish the C^{∞}-diffeomorphisms:
i. $S O(2) \cong S^{1}$,
$O(2) \cong S^{1} \coprod S^{1}$.
ii. $S L(2, \mathbb{R}) \cong\left\{(x, y, z, w) \mid x^{2}+y^{2}=1+z^{2}+w^{2}\right\} \subset \mathbb{R}^{4}$.
d. Prove the following identifications of the tangent spaces at the unit matrix, $T_{\mathbf{I}} G \subseteq M a t_{n \times n}(\mathbb{R})$:
i. $\mathfrak{g l}(n, \mathbb{R}):=T_{\mathbf{I}} G L(n, \mathbb{R})=\operatorname{Mat}_{n \times n}(\mathbb{R}) \quad$ ii. $\mathfrak{s l}(n, \mathbb{R}):=T_{\mathbb{I}} S L(n, \mathbb{R})=$ (matrices with zero trace) iii. $\mathfrak{s o}(n, \mathbb{R}):=T_{\mathbf{I}} S O(n, \mathbb{R})=($ skew-symmetric matrices $) \quad$ iv. $o(n, \mathbb{R}):=T_{\mathbb{I}} O(n, \mathbb{R})=T_{\mathbb{I}} S O(n, \mathbb{R})$.
e. Compute the action of the linear form ϕ^{\prime} from part b. on these tangent spaces.
f. A vector subspace $V \subseteq M a t_{n \times n}(\mathbb{R})$ is called "a Lie algebra" if it is closed under the commutator, i.e. $[A, B]:=A B-B A \in V$ for all $A, B \in V$. Prove: $\mathfrak{g l}(n, \mathbb{R}), \mathfrak{s l}(n, \mathbb{R}), \mathfrak{s o}(n, \mathbb{R})$ are Lie algebras.
3. Introduce equivalence relation on $\mathbb{R}^{n+1} \backslash\{o\}$ by: $v \sim w$ if $v \in \mathbb{R} \cdot w$. The real projective space $\mathbb{R}^{n}{ }^{n}$ is the set of equivalence classes. Take the natural projection $\psi: \mathbb{R}^{n+1} \backslash\{o\} \rightarrow \mathbb{R} \mathbb{P}^{n}$. The points of \mathbb{R}^{n} are denoted by $\left(x_{0}: \cdots: x_{n}\right)$ (defined up to scaling). Here x_{0}, \ldots, x_{n} are called "the homogeneous coordinates".
a. As the open sets on $\mathbb{R P}^{n}$ one takes the ψ-images of the opens in $\mathbb{R}^{n+1} \backslash\{o\}$. Verify: this is a topology.
b. Take the charts $\mathcal{U}_{j}=\left\{\left(x_{0}: \cdots: x_{n}\right) \mid x_{j} \neq 0\right\} \subset \mathbb{R} \mathbb{P}^{n}$ with the coordinate maps

$$
\mathcal{U}_{j} \ni\left(x_{0}: \cdots: x_{n}\right) \xrightarrow{\phi_{i}}\left(\frac{x_{0}}{x_{j}}, \ldots, \frac{x_{j-1}}{x_{j}}, \frac{x_{j+1}}{x_{j}}, \ldots \frac{x_{n}}{x_{j}}\right) \in \mathbb{R}^{n}
$$

Verify: these maps are well defined homeomorphisms. Write down the transition functions. Conclude: $\mathbb{R} \mathbb{P}^{n}$ is a C^{∞}-manifold.
c. Prove: $\psi: \mathbb{R}^{n+1} \backslash\{o\} \rightarrow \mathbb{R}^{n}$ is a C^{∞}-map of manifolds, and it factorizes as $\mathbb{R}^{n+1} \backslash\{o\} \rightarrow S^{n} \xrightarrow{2: 1} \mathbb{R}^{p}$.
d. Prove: $\mathbb{R P}^{1} \cong S^{1}$.
e. Can you construct $\mathbb{R P}^{2}$ topologically by gluing the $A 4$-page? (As with Möbius strip and Klein bottle).
4. a. Given a vector field ξ on M and a function $f \in C^{1}(M)$ verify: $\xi(f)$ is a well defined function.
b. Prove the Leibnitz rule: $\xi(f \cdot g)=\cdots$.
c. Which of the following vector fields on \mathbb{R}^{1} are related by coordinate changes: $2 \sin (x) \frac{d}{d x}, \quad \sin ^{2}(x) \frac{d}{d x}, \quad \sin (2 x) \frac{d}{d x}$.
d. Express the vector fields $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$ on \mathbb{R}^{2} in the polar coordinates. Express the vector fields $\frac{\partial}{\partial r}, \frac{\partial}{\partial \phi}$ in the cartesian coordinates. Compute the commutator $\left[\frac{\partial}{\partial r}, \frac{\partial}{\partial \phi}\right]$.
e. Take the "stereographic" covering $S^{1}=\mathbb{R}_{+}^{1} \cup \mathbb{R}_{-}^{1}$, with coordinates x, y. Write the pushforward (transition) map for vector fields from \mathbb{R}_{+}^{1} to \mathbb{R}_{-}^{1}. Prove: if a vector field is polynomial in both charts then the degree of this polynomial is ≤ 2.
f. Prove: any C^{r}-vector field on S^{1} is presentable as $c(\phi) \frac{\partial}{\partial \phi}$ for some $c \in C^{r}\left(S^{1}\right)$.

