Geometric Calculus 2, 201.1.1041 Homework 5
 Spring 2022 (D.Kerner)
 Questions to submit: 1.a. 2.c. 2.d. 2.f.iii. 3.d. 4.a. 4.b. 4.c. 5.d.ii.

1. a. Two map-germs $\gamma_{1}, \gamma_{2}:\left(\mathbb{R}^{1}, o\right) \rightarrow(M, p)$ are called equivalent if $\left.\frac{d \phi_{\alpha} \circ \gamma_{1}}{d t}\right|_{t=0}=\left.\frac{d \phi_{\alpha} \circ \gamma_{2}}{d t}\right|_{t=0}$ for some chart. Prove: γ_{1}, γ_{2} are equivalent iff the corresponding paths are tangent. Namely, $\left\|\phi_{\alpha} \circ \gamma_{1}(t)-\phi_{\alpha} \circ \gamma_{2}(t)\right\|=o(t)$.
b. Prove: if $M \subset \mathbb{R}^{N}$ then every vector $v \in T_{p} M$ has the unique representative $\tilde{v} \in \mathbb{R}^{N}$, which is tangent to M at p.
2. Given a vector field ξ and $f \in C^{r}(M)$ define the function $M \xrightarrow{\xi(f)} \mathbb{R}^{1}$ pointwise, $\left.\xi(f)\right|_{p}:=\left.\frac{d f(\gamma(t))}{d t}\right|_{t=0}$, where $\gamma:\left(\mathbb{R}^{1}, o\right) \rightarrow(M, p)$ is a map that represents $\left.\xi\right|_{p} \in T_{p} M$.
a. Prove: the function $\xi(f)$ is well defined.
b. Suppose in some chart ξ is presented as $\sum c_{i}(x) \frac{\partial}{\partial x_{i}}$. Verify (in that chart): $\xi(f)=\sum c_{i}(x) \partial_{x_{i}} f(x)$.
c. Assuming ξ is a C^{r-1}-field, prove: the application $(\xi, f) \rightarrow \xi(f)$ defines the \mathbb{R}-linear map $\xi: C^{r}(M) \rightarrow$ $C^{r-1}(M)$. Establish the Leibniz rule, $\xi(f \cdot g)=\cdots$
Prove: ξ is uniquely determined by this map, i.e. if $\xi(f)=\tilde{\xi}(f)$ for all $f \in C^{r}(M)$ then $\xi=\tilde{\xi}$.
d. Prove (for a C^{2}-manifold M): the commutator of two vector fields, i.e. $[\xi, \eta]:=\xi \circ \eta-\eta \circ \xi$, is a vector field. Namely, this is a differential operator of order one, and its transformations under transition maps are those of a vector field.

One says: the vector space of vector fields on M is a Lie algebra.
e. For vector fields ξ, η on M verify: $[f \xi, g \eta]=f g[\xi, \eta]-g \eta(f) \xi+f \xi(g) \eta$ for any $f, g \in C^{1}(M)$.
f. A vector field ξ on \tilde{M} is called tangent to a submanifold $M \subset \tilde{M}$ if $\left.\xi\right|_{p} \in T_{p} M$ for each point $p \in M$.
i. Verify: the restriction $\left.\xi\right|_{M}$ is a vector field on M iff ξ is tangent to M.
ii. Prove: if ξ, η are tangent to M then $\xi+\eta$ and $[\xi, \eta]$ are tangent as well.
iii. Suppose $M \subset \mathbb{R}^{N}$ is defined by $f(\underline{x})=0$, with $\left.\operatorname{grad}(f)\right|_{p} \neq 0$ for each $p \in M$. Prove: ξ is tangent to M iff $\left.\xi(f)\right|_{M}=0$.
3. a. Take a function $f \in C^{r}(\mathcal{U})$ for an open $\mathcal{U} \subseteq \mathbb{R}^{n}$. Define $\omega=d f$ and $\xi=\operatorname{grad}(f)$. Compute $\omega(\xi)$.
b. Verify: the pairing of forms and vector fields, $(\omega, \xi) \rightarrow \omega(\xi)$, is $C^{r}(M)$-bilinear, i.e. $\omega\left(\xi_{1}+\xi_{2}\right)=\ldots, \quad \omega(f \cdot \xi)=f \cdot(\omega(\xi))=(f \cdot \omega)(\xi), \quad\left(\omega_{1}+\omega_{2}\right) \xi=\ldots$.
c. We have defined the map $C^{r}(M) \rightarrow \Omega^{1}(M), f \rightarrow d f$. Verify: it is \mathbb{R}-linear, and satisfies the Leibniz rule.
d. A submanifold $M \subset \mathbb{R}^{n+1}$ is defined by the equation $f(\underline{x})=0$ for some $f \in C^{r}\left(\mathbb{R}^{N}\right)$. Compute $\left.d f\right|_{M}$.
4. Take the polar coordinates (r, θ, ϕ) on \mathbb{R}^{3}, with $\phi \in[0,2 \pi]$ and $\theta \in[0, \pi]$.
a. Take the charts $S^{2}=\mathbb{R}_{+}^{2} \cup \mathbb{R}_{-}^{2}$. Take the vector fields $\partial_{x_{1}}, \partial_{x_{2}}$ on \mathbb{R}_{+}^{2}. Write their pushforwards on \mathbb{R}_{-}^{2}. Write these vector fields in the polar coordinates on S^{2}.
b. Do the vector fields $\sin (\theta) \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi}$ extend to the global C^{∞}-fields on S^{2} ? Compute the commutator $\left[\sin (\theta) \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi}\right]$. Can you explain the result geometrically?
c. Express the forms $d x, d y, d z \in \Omega^{1}\left(\mathbb{R}^{3}\right)$ in polar coordinates. Express the 1 -forms $d r, d \theta, d \phi$ in cartesian coordinates.
5. a. Restrict the form $\omega=x d x+y d y$ onto $S^{1} \subset \mathbb{R}^{2}$. Present the restriction in the polar coordinates on S^{1}.
b. Take the torus $S^{1} \times S^{1} \subset \mathbb{R}^{3}$ from question 2.a of homework 2. Take $\omega=\sum \omega_{i} d x_{i} \in \Omega^{1}\left(\mathbb{R}^{3}\right)$. Present the restriction $\left.\omega\right|_{S^{1} \times S^{1}}$ in the coordinates $\left(\phi_{1}, \phi_{2}\right)$ on this torus.
c. Take a C^{r} map $\psi:(M, p) \rightarrow(\tilde{M}, \tilde{p})$. (Dis)Prove: i. If ψ is an embedding then ψ_{*} is injective. ii. If ψ is surjective then ψ_{*} is surjective. iii. $\psi^{*}\left(\left(\psi_{*} \xi\right)(f)\right)=\xi\left(\psi^{*}(f)\right)$ for each $f \in C^{r}(\tilde{M})$.
d. Given a map $\psi: M \rightarrow \tilde{M}$ and the corresponding homomorphism of vector spaces $\psi^{*}: \Omega^{1}(M) \leftarrow \Omega^{1}(\tilde{M})$.
i. Verify: $\psi^{*}(f \cdot \omega)=\psi^{*}(f) \cdot \psi^{*}(\omega)$.
ii. Verify: $\psi^{*} d f=d \psi^{*} f$. For a submanifold $M \subseteq \tilde{M}$ one gets: $\left.(d f)\right|_{M}=d\left(\left.f\right|_{M}\right)$.
iii. Given two maps $M_{1} \xrightarrow{\psi_{7}} M_{2} \xrightarrow{\psi_{2}} M_{3}$ prove: $\left(\psi_{2} \circ \psi_{1}\right)^{*}=\psi_{1}^{*} \circ \psi_{2}^{*}$.

