Geometric Calculus 2, 201.1.1041
 Homework 6

Spring 2022 (D.Kerner)
Questions to submit: 1. 2.b. 2.d. 3.a. 3.e. 4.b.iii. 4.c.ii. 4.d. 4.f.

1. For a point $p \in M$ denote by $\mathfrak{m}_{p} \subset C^{\infty}(M)$ the subset of functions that vanish at p. Prove: \mathfrak{m}_{p} is an ideal in the ring $C^{\infty}(M)$. Define the map $C^{\infty}(M) \rightarrow T_{p}^{*} M$ by $\left.f \rightarrow d f\right|_{p}$. Prove: its kernel is \mathfrak{m}_{p}^{2}.
2. a. We have defined the (scalar) integral $\int_{C} f d C$ via partitions on C, and for these we have (slightly) used the parametrization of C. Verify: the integral (if exists) does not depend on the choice of parametrization.
b. Compute the integrals: i. $\int_{\left\{x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}\right\}}\left(x^{\frac{4}{3}}+y^{\frac{4}{3}}\right) d C . \quad$ ii. $\int_{\left(x^{2}+y^{2}\right)^{2}=a^{2}\left(x^{2}-y^{2}\right)}|y| d C$.
c. For which values of $s>0$ the planar curve defined by $r(\theta)=\frac{1}{1+\theta^{s}}, \theta \in[0, \infty)$ has a finite length?
d. A curve $C \subset \mathbb{R}^{3}$ is defined via parameterization in polar coordinates by equations $r=r(\phi), \theta=\theta(\phi)$, for $\phi \in\left[\phi_{0}, \phi_{1}\right]$. (Here θ is the angle with \hat{z}-axis.) Prove: $\int_{C} f \cdot d C=\int_{\phi_{0}}^{\phi_{1}} f \cdot \sqrt{\left(\partial_{\phi} r\right)^{2}+r^{2}\left(\partial_{\phi} \theta\right)^{2}+r^{2} \sin ^{2}(\theta)} d \phi$.
e. Suppose $\int_{C} f d C$ exists. Prove: $\left|\int_{C} f d C\right| \leq \int_{C}|f| d C$.
3. a. Compute $\int_{C} \vec{F} \cdot d \vec{C}$ in the following cases:
i. $\vec{F}(\underline{x})=\left(x_{1}, x_{2}^{2}, \ldots, x_{n}^{n}\right), C=\left\{\left(\sin (t), \sin ^{2}(t), \ldots, \sin ^{n}(t)\right) \mid t \in[0, \pi]\right\}$.
ii. $\int_{\substack{\left.x^{2}+y^{2}+z^{2}=1,\right\} \\ y=-x, z>0}}\left(z^{2} d x+3 y^{2} d y-x^{2} d z\right)$, the curve begins at $\left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0\right)$ and ends at $\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$.
b. Given a smooth curve $C \subset \mathbb{R}^{n}$, take the projections onto the coordinate axes $\left\{C \xrightarrow{\pi_{j}} \operatorname{Span}\left(\hat{x}_{i}\right)\right\}$. Suppose these are diffeomorphisms onto their images. Prove: $\int_{C} \vec{F} \cdot \vec{C}=\sum \int_{\pi_{i}(C)} F_{i}\left(\pi_{i}^{-1}\left(x_{i}\right)\right) d x_{i}$. What is the orientation of $\pi_{i}(C)$ here?
c. How to adjust the formula in b. when some projections are not bijective? (e.g. how to convert $\int_{S^{1}} \vec{F} \cdot d \vec{C}$ into $\int(.) d x+.\int(.) d$.$y ?) Using this formula recompute the integrals in part a.$
d. Let M be a one-dimensional manifold and assume $\int_{M} \omega$ exists. For a finite subset $S \subset M$ prove: $\int_{M} \omega=\int_{M \backslash S} \omega$.
e. Take a neighborhood $S^{1} \subset \mathcal{U} \subset \mathbb{R}^{2}$ and a function $f \in C^{1}(\mathcal{U})$. Define $\omega:=\left.d f\right|_{S^{1}} \in \Omega^{1}\left(S^{1}\right)$. Compute $\int_{S^{1}} \omega$.
4. a. Prove: $V_{1} \otimes \cdots \otimes V_{k}=0$ iff at least one of V_{j} is a zero vector space.
b. Establish the natural (basis-free) isomorphisms: i. $V_{1} \otimes\left(V_{2} \otimes V_{3}\right) \cong\left(V_{1} \otimes V_{2}\right) \otimes V_{3}$.
ii. $V \otimes(U \oplus W) \cong(V \otimes U) \oplus(V \otimes W)$. iii. $V^{*} \otimes W^{*} \cong(V \otimes W)^{*} \cong \operatorname{Hom}\left(V, W^{*}\right) \cong \operatorname{Hom}\left(W, V^{*}\right)$.
c. Fix some bases: $V=\operatorname{Span}\left\{v_{i}\right\}, W=\operatorname{Span}\left\{w_{i}\right\}$.
i. Prove: $\left\{v_{i} \otimes w_{j}\right\}$ is a basis of $V \otimes W$. (The non-trivial part here is the linear independence. Hint: use the dual bases of V^{*}, W^{*}.)
ii. Write explicit bases for $S y m^{k} V^{*}, \stackrel{k}{\Lambda} V^{*}$. (Verify that these are bases.)
d. Prove: the (skew-)symmetrization operations $S y m: \otimes^{k} V \rightarrow \otimes^{k} V, A l t: \otimes^{k} V \rightarrow \otimes^{k} V$ are projectors. In particular they result in (skew-)symmetric forms.
e. Prove: i. $\operatorname{Sym}(f \otimes g)=\operatorname{Sym}(f \otimes \operatorname{Sym}(g))=\operatorname{Sym}(\operatorname{Sym}(f) \otimes g)$.
ii. $\operatorname{Alt}(f \otimes g)=\operatorname{Alt}(f \otimes \operatorname{Alt}(g))=\operatorname{Alt}(\operatorname{Alt}(f) \otimes g)$.
f. i. For some vectors $\left\{v_{i}\right\}$ in V prove: $v_{1} \wedge \cdots \wedge v_{k}=0$ iff these vectors are linearly dependent.
ii. Verify: $f \wedge f=0$ for any $f \in{ }_{\Lambda}^{k} V^{*}$ with k-odd.
iii. Given $f_{i} \in \Lambda{ }^{k_{i}} V^{*}$, verify: $f_{1} \wedge \cdots \wedge f_{k}=\frac{\left(k_{1}+\cdots k_{f}\right)!}{k_{1}!\cdots k_{f}!} \operatorname{Alt}\left(f_{1} \otimes f_{k}\right)$.
