Geometric Calculus 2, 201.1.1041 Homework 8

Spring 2022 (D.Kerner)

Questions to submit: 1.b. 1.e. 2.a. 2.d. 2.f. 2.g. 3.a. 3.b. 4.a.

The notion "the set X of dimension $\leq (n-1)$ " was defined in the class.

- 1. a. Given a parameterized submanifold $\mathbb{R}^n_u \supseteq \mathcal{U} \xrightarrow{\phi} M \subset \mathbb{R}^N_x$ we have the tangent subspaces $T_pM \subset \mathbb{R}^N$. Take the standard inner product on \mathbb{R}^N and restrict it to T_pM . Compute the angle between the vectors $\phi_* \hat{e}_i, \phi_* \hat{e}_i$ (for the standard basis of \mathbb{R}^n at $\phi^{-1}(p)$).
 - b. Vector fields ξ, η on $S^2 \setminus \{\pm \hat{z}\} \subset \mathbb{R}^3$ are of unit length, go along the parallels/meridians, and ξ is northoriented, while η is west-oriented. Write the formulas for ξ, η in polar coordinates. Compute $[\xi, \eta]$.

 - c. For $M_1 \xrightarrow{\psi_1} M_2 \xrightarrow{\psi_2} M_3$ and the corresponding pullbacks of Ω^k prove: $\psi_1^* \circ \psi_2^* = (\psi_2 \circ \psi_1)^*$. d. Deduce: if $\psi \circlearrowright M$ is smoothly invertible then all the pullbacks $\psi^* \circlearrowright \Omega^k(M)$ are (linear) isomorphisms.
 - e. Take an embedding $\mathbb{R}^2_{xy} \supseteq \mathcal{U} \xrightarrow{\phi} \mathbb{R}^3_{xyz}$. Verify: $\phi^*(dy \wedge dz) = 0$, $\phi^*(dx \wedge dz) = 0$. Do this in as many ways as possible, e.g. by checking the action on $T_p\mathcal{U}$, by taking the pullback, by using $\phi^*d(\ldots) = d\phi^*(\ldots)$.
- 2. For a parameterized manifold we have defined $\int_M f dM = \int \phi^*(f) \cdot \sqrt{det[(\frac{\partial x}{\partial u})^t \cdot \frac{\partial x}{\partial u}]} \cdot du_1 \dots du_n$.

 - a. Prove the linear algebra identity: $det[\mathbb{1} + \{v_i \cdot v_j\}_{ij}] = 1 + \sum v_i^2$. b. For $M \subset \mathbb{R}^3$ with a parametrization $\underline{x}(s,t)$ verify: $\int_M f dM = \int f(\underline{x}(s,t)) \cdot \|\partial_s \underline{x} \times \partial_t \underline{x}\| \cdot ds dt$. (Here $\partial_s \underline{x} \times \partial_t \underline{x}$ is the vector product.)
 - c. Suppose dim(M) = n and the subset $X \subset M$ is of dimension $\leq (n-1)$. Prove: $\int_M f dM = \int_{M \setminus X} f dM$. (Compare to the dim=1 case.)
 - d. Suppose $M \subset \mathbb{R}^{n+1}$ is the graph of a function, i.e. $x_{n+1} = g(x_1, \ldots, x_n)$. Prove: $\int_M f dM = \int_{\mathcal{U}} f \cdot$ $\sqrt{1+\|\nabla g\|^2} \cdot dx_1 \dots dx_n.$
 - e. The hypersurface $M \subset \mathbb{R}^{n+1}$ is defined by the equation h(x) = 0. Suppose the projection $M \to \mathbb{R}^n_{x_1...x_n}$ is injective and $\partial_{x_{n+1}}h$ does not vanish on $M \setminus X$, where $\dim(X) \leq n-1$. Prove: $\int_M f dM = \int f \cdot \frac{1}{2} \int_M f dM$ $\frac{\|grad(h)\|}{|\partial_{x_{n+1}}h|}dx_1\dots dx_n.$
 - f. Suppose M lies in a hyperplane $L \subset \mathbb{R}^{n+1}$, with dim(M) = dim(L) = n. Denote the angle between L and $\mathbb{R}^n_{x_1...x_n}$ by α . Take the orthogonal projection $\mathbb{R}^{n+1} \to \mathbb{R}^n_{x_1...x_n}$. Prove: $vol_n(M) \cdot cos(\alpha) = vol_n \pi(M)$.
 - g. Take the torus of question 3.a from homework 2. For the parametrization of $\mathcal{U} \to M \subseteq S^1 \times S^1$ by two angles prove: $\int_M f dM = \iint_{(\phi_1,\phi_2) \in \mathcal{U}} f(\underline{x}(\phi_1,\phi_2)) \cdot r \cdot (R + r\sin(\phi_1)) d\phi_1 d\phi_2$. In particular, compute the surface area of the torus.
- 3. a. Take a vector subspace $\mathbb{R}^n \subset \mathbb{R}^{n+1}$ and a vector $\xi \in \mathbb{R}^{n+1} \setminus \mathbb{R}^n$. Take two bases, $\{v_i\}$ and $\{w_i\}$ on \mathbb{R}^n . Prove: the bases $\{v_i\}, \{w_i\}$ have compatible orientations iff the bases $\{v_i\}, \xi$ and $\{w_j\}, \xi$ have compatible orientations.
 - b. Prove: a smooth hypersurface $M \subset \mathbb{R}^{n+1}$ is orientable iff it is possible to chose unit normals $\{\hat{n}_p\}_{p \in M}$ that vary continuously with p.
 - c. A subset $M \subset \mathbb{R}^{n+1}$ is defined by the equation $f(\underline{x}) = 0$. Suppose grad(f) does not vanish at any point of M. Prove: M is an orientable manifold.
- 4. a. Take the standard charts \mathbb{R}^n_+ , \mathbb{R}^n_- on $S^n \subset \mathbb{R}^{n+1}$, with coordinate transformation $\underline{x} \to \underline{y} = \frac{x}{\|x\|^2}$. Is this an oriented atlas? (See question 2.a.)
 - b. Suppose $M \subset \tilde{M}$, with $dim(M) = dim(\tilde{M})$, and M is non-orientable. Prove: \tilde{M} is non-orientable. Deduce: the Klein bottle and the real projective plane (\mathbb{RP}^2) are non-orientable.
 - c. Take a manifold with two charts, $M = \mathcal{U}_1 \cup \mathcal{U}_2$, and assume $\mathcal{U}_1 \cap \mathcal{U}_2$ is path-connected. Prove: M is orientable. Deduce: S^n is orientable.
 - d. Prove: if M is orientable and path connected, then there exist exactly two orientations.
 - e. If M is orientable and has d connected components then the total number of possible orientations is 2^d .

