Geometric Calculus 2, 201.1.1041 Homework 8

Spring 2022 (D.Kerner)
Questions to submit: 1.b. 1.e. 2.a. 2.d. 2.f. 2.g. 3.a. 3.b. 4.a.
The notion "the set X of dimension $\leq(n-1)$ " was defined in the class.

1. a. Given a parameterized submanifold $\mathbb{R}_{u}^{n} \supseteq \mathcal{U} \xrightarrow{\phi} M \subset \mathbb{R}_{x}^{N}$ we have the tangent subspaces $T_{p} M \subset \mathbb{R}^{N}$. Take the standard inner product on \mathbb{R}^{N} and restrict it to $T_{p} M$. Compute the angle between the vectors $\phi_{*} \hat{e}_{i}, \phi_{*} \hat{e}_{j}$ (for the standard basis of \mathbb{R}^{n} at $\phi^{-1}(p)$).
b. Vector fields ξ, η on $S^{2} \backslash\{ \pm \hat{z}\} \subset \mathbb{R}^{3}$ are of unit length, go along the parallels/meridians, and ξ is northoriented, while η is west-oriented. Write the formulas for ξ, η in polar coordinates. Compute $[\xi, \eta]$.
c. For $M_{1} \xrightarrow{\psi_{7}} M_{2} \xrightarrow{\psi_{2}} M_{3}$ and the corresponding pullbacks of Ω^{k} prove: $\psi_{1}^{*} \circ \psi_{2}^{*}=\left(\psi_{2} \circ \psi_{1}\right)^{*}$.
d. Deduce: if $\psi \circlearrowright M$ is smoothly invertible then all the pullbacks $\psi^{*} \circlearrowright \Omega^{k}(M)$ are (linear) isomorphisms.
e. Take an embedding $\mathbb{R}_{x y}^{2} \supseteq \mathcal{U} \stackrel{\phi}{\hookrightarrow} \mathbb{R}_{x y z}^{3}$. Verify: $\phi^{*}(d y \wedge d z)=0, \phi^{*}(d x \wedge d z)=0$. Do this in as many ways as possible, e.g. by checking the action on $T_{p} \mathcal{U}$, by taking the pullback, by using $\phi^{*} d(\ldots)=d \phi^{*}(\ldots)$.
2. For a parameterized manifold we have defined $\int_{M} f d M=\int \phi^{*}(f) \cdot \sqrt{\operatorname{det}\left[\left(\frac{\partial x}{\partial u}\right)^{t} \cdot \frac{\partial x}{\partial u}\right]} \cdot d u_{1} \ldots d u_{n}$.
a. Prove the linear algebra identity: $\operatorname{det}\left[\mathbb{I}+\left\{v_{i} \cdot v_{j}\right\}_{i j}\right]=1+\sum v_{i}^{2}$.
b. For $M \subset \mathbb{R}^{3}$ with a parametrization $\underline{x}(s, t)$ verify: $\int_{M} f d M=\int f(\underline{x}(s, t)) \cdot\left\|\partial_{s} \underline{x} \times \partial_{t} \underline{x}\right\| \cdot d s d t$. (Here $\partial_{s} \underline{x} \times \partial_{t} \underline{x}$ is the vector product.)
c. Suppose $\operatorname{dim}(M)=n$ and the subset $X \subset M$ is of dimension $\leq(n-1)$. Prove: $\int_{M} f d M=\int_{M \backslash X} f d M$. (Compare to the dim=1 case.)
d. Suppose $M \subset \mathbb{R}^{n+1}$ is the graph of a function, i.e. $x_{n+1}=g\left(x_{1}, \ldots, x_{n}\right)$. Prove: $\int_{M} f d M=\int_{\mathcal{U}} f$. $\sqrt{1+\|\nabla g\|^{2}} \cdot d x_{1} \ldots d x_{n}$.
e. The hypersurface $M \subset \mathbb{R}^{n+1}$ is defined by the equation $h(x)=0$. Suppose the projection $M \rightarrow \mathbb{R}_{x_{1} \ldots x_{n}}^{n}$ is injective and $\partial_{x_{n+1}} h$ does not vanish on $M \backslash X$, where $\operatorname{dim}(X) \leq n-1$. Prove: $\int_{M} f d M=\int f$. $\frac{\|\operatorname{grad}(h)\|}{\left|\partial_{x_{n+1}} h\right|} d x_{1} \ldots d x_{n}$.
f. Suppose M lies in a hyperplane $L \subset \mathbb{R}^{n+1}$, with $\operatorname{dim}(M)=\operatorname{dim}(L)=n$. Denote the angle between L and $\mathbb{R}_{x_{1} \ldots x_{n}}^{n}$ by α. Take the orthogonal projection $\mathbb{R}^{n+1} \rightarrow \mathbb{R}_{x_{1} \ldots x_{n}}^{n}$. Prove: $\operatorname{vol}_{n}(M) \cdot \cos (\alpha)=\operatorname{vol}_{n} \pi(M)$.
g. Take the torus of question 3.a from homework 2. For the parametrization of $\mathcal{U} \rightarrow M \subseteq S^{1} \times S^{1}$ by two angles prove: $\int_{M} f d M=\iint_{\left(\phi_{1}, \phi_{2}\right) \in \mathcal{U}} f\left(\underline{x}\left(\phi_{1}, \phi_{2}\right)\right) \cdot r \cdot\left(R+r \sin \left(\phi_{1}\right)\right) d \phi_{1} d \phi_{2}$. In particular, compute the surface area of the torus.
3. a. Take a vector subspace $\mathbb{R}^{n} \subset \mathbb{R}^{n+1}$ and a vector $\xi \in \mathbb{R}^{n+1} \backslash \mathbb{R}^{n}$. Take two bases, $\left\{v_{i}\right\}$ and $\left\{w_{j}\right\}$ on \mathbb{R}^{n}. Prove: the bases $\left\{v_{i}\right\},\left\{w_{j}\right\}$ have compatible orientations iff the bases $\left\{v_{i}\right\}, \xi$ and $\left\{w_{j}\right\}, \xi$ have compatible orientations.
b. Prove: a smooth hypersurface $M \subset \mathbb{R}^{n+1}$ is orientable iff it is possible to chose unit normals $\left\{\hat{n}_{p}\right\}_{p \in M}$ that vary continuously with p.
c. A subset $M \subset \mathbb{R}^{n+1}$ is defined by the equation $f(\underline{x})=0$. Suppose $\operatorname{grad}(f)$ does not vanish at any point of M. Prove: M is an orientable manifold.
4. a. Take the standard charts $\mathbb{R}_{+}^{n}, \mathbb{R}_{-}^{n}$ on $S^{n} \subset \mathbb{R}^{n+1}$, with coordinate transformation $\underline{x} \rightarrow \underline{y}=\frac{x}{\|\underline{x}\|^{2}}$. Is this an oriented atlas? (See question 2.a.)
b. Suppose $M \subset \tilde{M}$, with $\operatorname{dim}(M)=\operatorname{dim}(\tilde{M})$, and M is non-orientable. Prove: \tilde{M} is non-orientable. Deduce: the Klein bottle and the real projective plane $\left(\mathbb{R P}^{2}\right)$ are non-orientable.
c. Take a manifold with two charts, $M=\mathcal{U}_{1} \cup \mathcal{U}_{2}$, and assume $\mathcal{U}_{1} \cap \mathcal{U}_{2}$ is path-connected.

Prove: M is orientable. Deduce: S^{n} is orientable.
d. Prove: if M is orientable and path connected, then there exist exactly two orientations.
e. If M is orientable and has d connected components then the total number of possible orientations is 2^{d}.

