Geometric Calculus 2, 201.1.1041 Homework 9

Spring 2022 (D.Kerner) Questions to submit: 1. 2.e. 3.b. 4. 5.b. 5.c. 5.d. 5.e. 5.g.

The notion "the set X of dimension $\leq (n-1)$ " was defined in the class.

- 1. For an embedded manifold $M \subset \mathbb{R}^N$ and $0 \leq k < \infty$ prove: $\Omega^k(\mathbb{R}^N) \twoheadrightarrow \Omega^k(M)$. (The case k = 1 was in the class.)
- 2. Given two C^r-manifolds with their atlases, (M_i, \mathcal{A}_i) , consider the manifold $(M_1 \times M_2, \mathcal{A}_1 \times \mathcal{A}_2)$, whose charts are $\{\mathcal{U}_{\alpha}^{(1)} \times \mathcal{U}_{\beta}^{(2)}\}_{\alpha,\beta}$ and the coordinate maps are $\{\phi_{\alpha}^{(1)} \times \phi_{\beta}^{(2)}\}_{\alpha,\beta}$. a. Verify: $M_1 \times M_2$ is a C^r -manifold, and $\dim(M_1 \times M_2) = \dim(M_1) + \dim(M_2)$.

 - b. In the embedded case, $\psi_i : M_i \hookrightarrow \mathbb{R}^{N_i}$, verify: $\psi_1 \times \psi_2 : M_1 \times M_2 \hookrightarrow \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}$ is a manifold embedding.
 - c. Give an example where N_1, N_2 are the minimal embedding dimensions for M_1, M_2 , but $M_1 \times M_2$ can be embedded into $\mathbb{R}^{N_1+N_2-1}$.
 - d. Prove: if M_1, M_2 are compact/path-connected/orientable, then so is $M_1 \times M_2$. (Deduce: $S^{n_1} \times \cdots \times S^{n_k}$ is orientable.)
 - e. In the embedded oriented case take the volume forms, $\Omega_i \in \Omega^{n_i}(M_i)$. The candidate for the volume form on $M_1 \times M_2 \subset \mathbb{R}^{N_1+N_2}$ is " $\Omega_1 \times \Omega_2$ ". Formulate and prove the precise statement. In particular verify: $vol_{n_1+n_2}(M_1 \times M_2) = vol_{n_1}(M_1) \cdot vol_{n_2}(M_2).$
- 3. a. Prove: the (non-)orientability of M depends only on the C^1 -diffeomorphism type of M (and not on an embedding $M \hookrightarrow \mathbb{R}^N$).
 - b. Prove: the real projective space \mathbb{RP}^n (see hwk.4. q.3) is orientable iff n is odd. (Hint: use the covering $S^n \to \mathbb{RP}^n$.)
 - c. Suppose dim(M) = n and there exists a form $\omega \in \Omega^n(M)$ without zeros, i.e. $\omega|_p \neq 0 \in \bigwedge^n T_p^*M$ for each $p \in M$. Prove: M is orientable.
- 4. Compute the area of the surface $S = \{(x, y, z) | x^2 + y^2 + z^2 = a^2, \frac{x^2}{a^2} + \frac{z^2}{b^2} \le 1\}$, here $0 < b \le a$.
- 5. a. Take a parameterized hypersurface, $\mathbb{R}^n \supset \mathcal{U} \rightarrow M \subset \mathbb{R}^{n+1}, \underline{u} \rightarrow \underline{x}(\underline{u})$. (The orientation of M is induced from that of \mathcal{U} .) Prove: the flux of a vector field \vec{F} through M equals $\int_{\mathcal{U}} det \left[\vec{F}, \partial_{u_1} \underline{x}, \ldots, \partial_{u_n} \underline{x}\right] du_1 ... du_n$. (We have proved this in the class.)
 - b. Convert this into an explicit formula in the particular case of the graph of a function, i.e. M = $\{(x,y,z)|z=z(x,y)\} \subset \mathcal{U}_{xy} \times \mathbb{R}^1_z$. Verify that the orientation of \mathcal{U} is compatible with the upper normal to M.
 - c. Suppose $M_{dim=2} \subseteq S^2 \subset \mathbb{R}^3$, with the outer normal. Given a field $\vec{F} = f \cdot \vec{r}$ prove: its flux is $\iint_S \vec{F} d\vec{S} = \iint_{\mathcal{U}} f \cdot r^3 \sin(\theta) d\theta d\phi$. (Which order of θ, ϕ corresponds to the outer normal of S^2 ?) In particular, compute the flux of $\vec{F} = \frac{\vec{r}}{r^d}$ through $S^2 \subset \mathbb{R}^3$.
 - d. Take a smooth surface $S \subset \mathbb{R}^3$. Suppose the projections π_x, π_y, π_z of S onto all the coordinate planes are C¹-diffeomorphisms onto their images. (Thus S is the graph of functions, z = z(x, y), y = y(x, z), x = x(y, z).) Fix an orientation on S, i.e. choose the normal $\hat{n} = (n_x, n_y, n_z)$.
 - Verify: each of the functions n_x, n_y, n_z has a (locally) constant sign on S.
 - Let $\omega = f_x dy \wedge dz + f_y dz \wedge dx + f_z dx \wedge dy|_S \in \Omega^2(S)$. Prove:

 $\int_{S} \omega = \int_{\pi_z(S)} f(x, y, z(x, y)) \cdot sign(n_z) \cdot dxdy + \int_{\pi_x(S)} f(x(y, z), y, z) \cdot sign(n_x) \cdot dydz + \cdots$

- e. Compute $\int_{S} \omega$ where $\omega = (x+z)x \wedge dy + (z+y+\cos(x))dy \wedge dz + (x-\sin(y))dz \wedge dx|_{S}$. Here $S = (\partial Pyramid) \setminus \mathcal{U}$, with $Pyramid \subset \mathbb{R}^3$ defined by $x, y, z \ge 0, x + y + z \le 1$, and $\mathcal{U} \subset \mathbb{R}^2_{xy}$ is defined by $x, y \ge 0, x^2 + y^2 \le \frac{1}{\sqrt{2}}$. (The orientation corresponds to the outer normal.)
- f. Compute $\int_C \vec{F} \cdot d\vec{C}$ in the following cases: i. $\vec{F} = \frac{(-y,x)}{x^2+y^2}, C = \{\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\} \subset \mathbb{R}^2$ (counterclockwise). ii. $\vec{F} = \frac{(-y,x)}{x^2 + y^2}$, and the curve $(\sqrt{3}, 1) \rightsquigarrow (-\sqrt{3}, 1)$ is given in polar coordinates by $r(\theta) = \frac{1}{1 - \sin(\theta)}$.
- g. For each $n \in \mathbb{N}$ give a closed oriented curve that does not pass through (0,0) and satisfies: $\oint_{\overrightarrow{C}x^2+u^2} d\overrightarrow{C} = 2\pi n$.