Geometric Calculus 2, 201.1.1041 Homework 9

Questions to submit: 1. 2.e. 3.b. 4. 5.b. 5.c. 5.d. 5.e. 5.g.

The notion "the set X of dimension $\leq(n-1)$ " was defined in the class.

1. For an embedded manifold $M \subset \mathbb{R}^{N}$ and $0 \leq k<\infty$ prove: $\Omega^{k}\left(\mathbb{R}^{N}\right) \rightarrow \Omega^{k}(M)$. (The case $k=1$ was in the class.)
2. Given two C^{r}-manifolds with their atlases, $\left(M_{i}, \mathcal{A}_{i}\right)$, consider the manifold $\left(M_{1} \times M_{2}, \mathcal{A}_{1} \times \mathcal{A}_{2}\right)$, whose charts are $\left\{\mathcal{U}_{\alpha}^{(1)} \times \mathcal{U}_{\beta}^{(2)}\right\}_{\alpha, \beta}$ and the coordinate maps are $\left\{\phi_{\alpha}^{(1)} \times \phi_{\beta}^{(2)}\right\}_{\alpha, \beta}$.
a. Verify: $M_{1} \times M_{2}$ is a C^{r}-manifold, and $\operatorname{dim}\left(M_{1} \times M_{2}\right)=\operatorname{dim}\left(M_{1}\right)+\operatorname{dim}\left(M_{2}\right)$.
b. In the embedded case, $\psi_{i}: M_{i} \hookrightarrow \mathbb{R}^{N_{i}}$, verify: $\psi_{1} \times \psi_{2}: M_{1} \times M_{2} \hookrightarrow \mathbb{R}^{N_{1}} \times \mathbb{R}^{N_{2}}$ is a manifold embedding.
c. Give an example where N_{1}, N_{2} are the minimal embedding dimensions for M_{1}, M_{2}, but $M_{1} \times M_{2}$ can be embedded into $\mathbb{R}^{N_{1}+N_{2}-1}$.
d. Prove: if M_{1}, M_{2} are compact/path-connected/orientable, then so is $M_{1} \times M_{2}$. (Deduce: $S^{n_{1}} \times \cdots S^{n_{k}}$ is orientable.)
e. In the embedded oriented case take the volume forms, $\Omega_{i} \in \Omega^{n_{i}}\left(M_{i}\right)$. The candidate for the volume form on $M_{1} \times M_{2} \subset \mathbb{R}^{N_{1}+N_{2}}$ is " $\Omega_{1} \times \Omega_{2}$ ". Formulate and prove the precise statement. In particular verify: $\operatorname{vol}_{n_{1}+n_{2}}\left(M_{1} \times M_{2}\right)=\operatorname{vol}_{n_{1}}\left(M_{1}\right) \cdot \operatorname{vol}_{n_{2}}\left(M_{2}\right)$.
3. a. Prove: the (non-)orientability of M depends only on the C^{1}-diffeomorphism type of M (and not on an embedding $M \hookrightarrow \mathbb{R}^{N}$).
b. Prove: the real projective space $\mathbb{R}^{n} \mathbb{P}^{n}$ (see hwk.4. q.3) is orientable iff n is odd.
(Hint: use the covering $S^{n} \rightarrow \mathbb{R} \mathbb{P}^{n}$.)
c. Suppose $\operatorname{dim}(M)=n$ and there exists a form $\omega \in \Omega^{n}(M)$ without zeros, i.e. $\left.\omega\right|_{p} \neq 0 \in \Lambda^{n} T_{p}^{*} M$ for each $p \in M$. Prove: M is orientable.
4. Compute the area of the surface $S=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=a^{2}, \frac{x^{2}}{a^{2}}+\frac{z^{2}}{b^{2}} \leq 1\right\}$, here $0<b \leq a$.
5. a. Take a parameterized hypersurface, $\mathbb{R}^{n} \supset \mathcal{U} \rightarrow M \subset \mathbb{R}^{n+1}, \underline{u} \rightarrow \underline{x}(\underline{u})$. (The orientation of M is induced from that of \mathcal{U}.) Prove: the flux of a vector field \vec{F} through \bar{M} equals $\int_{\mathcal{U}} \operatorname{det}\left[\vec{F}, \partial_{u_{1}} \underline{x}, \ldots, \partial_{u_{n}} \underline{x}\right] d u_{1} . . d u_{n}$. (We have proved this in the class.)
b. Convert this into an explicit formula in the particular case of the graph of a function, i.e. $M=$ $\{(x, y, z) \mid z=z(x, y)\} \subset \mathcal{U}_{x y} \times \mathbb{R}_{z}^{1}$. Verify that the orientation of \mathcal{U} is compatible with the upper normal to M.
c. Suppose $M_{\text {dim=2 }} \subseteq S^{2} \subset \mathbb{R}^{3}$, with the outer normal. Given a field $\vec{F}=f \cdot \vec{r}$ prove: its flux is $\iint_{S} \vec{F} d \vec{S}=\iint_{\mathcal{U}} f \cdot r^{3} \sin (\theta) d \theta d \phi$. (Which order of θ, ϕ corresponds to the outer normal of $S^{2} ?$)
In particular, compute the flux of $\vec{F}=\frac{\vec{r}}{r^{d}}$ through $S^{2} \subset \mathbb{R}^{3}$.
d. Take a smooth surface $S \subset \mathbb{R}^{3}$. Suppose the projections $\pi_{x}, \pi_{y}, \pi_{z}$ of S onto all the coordinate planes are C^{1}-diffeomorphisms onto their images. (Thus S is the graph of functions, $z=z(x, y), y=y(x, z)$, $x=x(y, z)$.) Fix an orientation on S, i.e. choose the normal $\hat{n}=\left(n_{x}, n_{y}, n_{z}\right)$.

- Verify: each of the functions n_{x}, n_{y}, n_{z} has a (locally) constant sign on S.
- Let $\omega=f_{x} d y \wedge d z+f_{y} d z \wedge d x+\left.f_{z} d x \wedge d y\right|_{S} \in \Omega^{2}(S)$. Prove:

$$
\int_{S} \omega=\int_{\pi_{z}(S)} f(x, y, z(x, y)) \cdot \operatorname{sign}\left(n_{z}\right) \cdot d x d y+\int_{\pi_{x}(S)} f(x(y, z), y, z) \cdot \operatorname{sign}\left(n_{x}\right) \cdot d y d z+\cdots
$$

e. Compute $\int_{S} \omega$ where $\omega=(x+z) x \wedge d y+(z+y+\cos (x)) d y \wedge d z+\left.(x-\sin (y)) d z \wedge d x\right|_{S}$. Here $S=($ PPyramid $) \backslash \mathcal{U}$, with Pyramid $\subset \mathbb{R}^{3}$ defined by $x, y, z \geq 0, x+y+z \leq 1$, and $\mathcal{U} \subset \mathbb{R}_{x y}^{2}$ is defined by $x, y \geq 0, x^{2}+y^{2} \leq \frac{1}{\sqrt{2}}$. (The orientation corresponds to the outer normal.)
f. Compute $\int_{C} \vec{F} \cdot d \vec{C}$ in the following cases: i. $\vec{F}=\frac{(-y, x)}{x^{2}+y^{2}}, C=\left\{\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right\} \subset \mathbb{R}^{2}$ (counterclockwise). ii. $\vec{F}=\frac{(-y, x)}{x^{2}+y^{2}}$, and the curve $(\sqrt{3}, 1) \rightsquigarrow(-\sqrt{3}, 1)$ is given in polar coordinates by $r(\theta)=\frac{1}{1-\sin (\theta)}$.
g. For each $n \in \mathbb{N}$ give aclosed orientedcurvethat does not pass through $(0,0)$ and satisfies: $\oint_{\vec{C}} \frac{(-y, x)}{x^{2}+y^{2}} d \vec{C}=2 \pi n$.

