Introduction to Commutative Algebra

201.1.7071, Fall 2022, (D.Kerner)

Homework 0

(to be fully solved <u>before</u> the first lecture)



Commutative algebra is "even more abstract" than linear algebra. It is hard to work with rings/ideals/modules without a pre-acquired minimal package of examples (and the corresponding intuition). This is the current goal.

All our rings will be commutative, unital (with  $0 \neq 1$ ).  $\Bbbk$  denotes a(ny) field. R denotes a(ny) ring.  $\Bbbk[[\underline{x}]] := \Bbbk[[x_1, \ldots, x_n]]$  is the ring of formal power series. Given an open subset  $\mathcal{U} \subseteq \mathbb{R}^n$  we denote by  $C^r(\mathcal{U})$  the ring of functions on  $\mathcal{U}$  that are r-times continuously differentiable. (Here  $0 \leq r \leq \infty$ .) Denote by  $C^{\omega}(\mathcal{U})$  the ring of functions real-analytic on  $\mathcal{U}$ . For an open subset  $\mathcal{U} \subseteq \mathbb{C}$  denote by  $\mathcal{O}(\mathcal{U})$  the ring of function complex-analytic on  $\mathcal{U}$ . Given an ideal  $I \subsetneq R$  we take the quotient ring R/I.

Questions in *cursive* are intentionally imprecise.

- 1. a. Write down the definition of a ring, of an ideal, of a homomorphism of rings.
  - b. Given a ring R and indeterminates  $\underline{x} = \{x_1 \dots x_n\}$  write the definition of the rings  $R[\underline{x}], R[[\underline{x}]]$ .
  - c. (Dis)Prove: i.  $R[\underline{x}] = R[x_1][x_2] \dots [x_n]$ . ii.  $R[[\underline{x}]] = R[[x_1]][[x_2]] \dots [[x_n]]$ . iii.  $\Bbbk[x_1][[x_2]] = \Bbbk[[x_2]][x_1]$ .
  - d. Denote by  $R^{\times} \subset R$  the subset of all the invertible elements. Prove:  $R^{\times}$  is an abelian group. (What is the group operation?)
  - e. Describe (explicitly)  $R^{\times}$  for the following rings: i.  $\Bbbk[\underline{x}]$  ii.  $\Bbbk[[\underline{x}]]$  iii.  $C^r(\mathcal{U}), 0 \leq r \leq \infty, \omega$ .
  - f. Prove: any element of k[[x]] is presetable as  $u \cdot x^d$ . Here  $u \in R^{\times}$  and  $d \in \mathbb{N}$  are uniquely defined. g. Let  $A \in Mat_{n \times n}(R)$ . Prove: A is invertible iff  $det(A) \in R^{\times}$ .
  - Give examples with  $R = \mathbb{C}[x]$  where det(A) has no zeros in  $\mathbb{C}$  but A is non-invertible.
- 2. a. Write down the definition of an integral domain. (We will call this just "a domain".)
  - b. When are the rings  $R[\underline{x}]$ ,  $R[[\underline{x}]]$  domains? (Give a simple necessary and sufficient condition.)
  - c. Suppose  $\mathcal{U} \subseteq \mathbb{C}$  is connected. Is  $\mathcal{O}(\mathcal{U})$  a domain?
  - d.  $(0 \le r \le \infty)$  Prove:  $f \in C^r(\mathcal{U})$  is a zero divisor iff the zero locus  $f^{-1}(0) \subseteq \mathcal{U}$  has a non-empty interior.
  - e. Describe (explicitly) the invertible elements of  $k[x_1 \dots, x_n], k[[x_1 \dots, x_n]], C^r(\mathcal{U}), 0 \le r \le \infty$ .
- 3. a. Given an ideal  $I \subset R$  write down the definition of the quotient ring R/I.
  - b. Let  $1 \leq d < \infty$ . Define the map  $Taylor_d : C^{\infty}(-1, 1) \to \mathbb{R}[x]/(x)^{d+1}$  by Taylor-expanding (at 0) up to order d. Prove:  $Taylor_d$  is a surjective homomorphism of rings. What is its kernel?
  - c. Define the map  $Taylor : C^{\infty}(-1,1) \to \mathbb{R}[[x]]$  by taking the full Taylor expansion at 0. What is the kernel of this homomorphism?

Borel's lemma: this homomorphism is surjective.

- d. Given a homomorphism of rings,  $\phi : S \to R$ , prove:  $ker(\phi) \subset S$  is an ideal. Prove:  $\phi$  factorizes into  $S \to S/ker(\phi) \to R$ .
- 4. a. Prove: any homomorphism  $\Bbbk \to R$  is injective.
  - b. Prove: there exists (and unique) homomorphism of rings  $\mathbb{Z} \to R$ . Prove: its kernel is the ideal of the form  $(n) \subset \mathbb{Z}$ , where n =: char(R) is the *characteristic of* R.
  - c. Compute char(R) for the following rings. i.  $char \mathbb{Z}[\underline{x}]_{(n)}$  for a number  $n \in \mathbb{Z}$  ii.  $\mathbb{k}[x]$  iii.  $\mathbb{k}[[x]]$  iv.  $C^r(\mathcal{U})$  v.  $\mathcal{O}(\mathcal{U})$ . d. For any ideal I prove:  $char \mathbb{k}[\underline{x}]_I = char(\mathbb{k})$  and  $char \mathbb{k}[[\underline{x}]]_I = char(\mathbb{k})$ .

- 5. a. Let  $\mathfrak{m}_p \subset \Bbbk[x, y]$  be the set of all polynomials vanishing at the point  $p \in \Bbbk^2$ . Prove:  $\mathfrak{m}_p$  is an ideal with two generators. Write a couple of generators.
  - b. Fix three (distinct) points lying on a line in  $\mathbb{k}^2$ . Let  $I \subset \mathbb{k}[x, y]$  be the ideal of all the polynomials vanishing at these points. Prove:  $I = \langle l, q_3 \rangle$ , where l is a linear form, while  $(l) \not\supseteq q_3$  is a cubic polynomial. (Hint: apply the action  $GL(2, \mathbb{k}) \subset \mathbb{k}^2$  to bring these points to a nice position.) What happens for three points not on one line?
  - c. Let  $k = \bar{k}$ . List (explicitly) all the maximal ideals of k[x]. (Deduce: these maximal ideals correspond to the points of the line  $k^1$ .) Prove: any non-zero prime ideal in k[x] is maximal.
  - d. Give examples of maximal ideals in  $\mathbb{R}[x]$  that are not of the type you have seen in 4.c. (Can you explain this geometrically?)
  - e. Take two ideals,  $I = \langle x, y \rangle \subset \Bbbk[x, y]$  and  $J = \langle x 1, y 1 \rangle \subset \Bbbk[x, y]$ . Prove:  $I \cap J \supseteq I \cdot J$ . (What is the geometric meaning of  $I \cap J$  and  $I \cdot J$ ?)
  - f. Give (many) examples of prime ideals in k[x, y] that are not maximal. What is the geometry?
  - g. List all the maximal ideals of  $\mathbb{Z}$ . What is the geometry?

  - h. Prove: the rings  $\mathbb{k}[[\underline{x}]]$ ,  $\mathbb{k}[[\underline{x}]]/J$  have exactly one maximal ideal. What is the geometry? i. Prove: i.  $\mathbb{k}[\underline{x}]/(\underline{x^2}-1) \cong \mathbb{k}[\underline{x}]/(\underline{x}-1) \times \mathbb{k}[\underline{x}]/(\underline{x}+1) \cong \mathbb{k} \times \mathbb{k}$ . ii.  $\mathbb{k}[\underline{x}]/(\underline{x}-1)^2 \ncong \mathbb{k} \times \mathbb{k}$ . iii. (for  $k = \bar{k}$ )  $k[x,y]/(x^n - 1, y^m - 1) \cong \underbrace{\mathbb{k} \times \cdots \times \mathbb{k}}_{mn}$ .
- 6. a. The radical of an ideal  $I \subset R$  is the subset  $\sqrt{I} := \{r \in R | r^d \in I \text{ for } d \gg 1\}$ . Prove:  $\sqrt{I} \subset R$  is an ideal.
  - b. Take  $I = \langle x^2 + y^2 1, x^2 1 \rangle \subset \mathbb{k}[x, y]$ . Compute  $\sqrt{I}$ . (What is the geometry?)
  - c. Suppose  $I \supseteq J \supseteq I^d$  for some  $d \in \mathbb{N}$ . Prove:  $\sqrt{I} = \sqrt{J}$ .
  - d. Let  $\mathfrak{m} \subset C^{\infty}(\mathbb{R}^n)$  be the ideal of functions vanishing at the origin. What are its generators?
  - e. Denote by  $\mathfrak{m}^{\infty} \subset C^{\infty}(\mathbb{R}^n)$  the subset of functions "flat" at  $o \in \mathbb{R}^n$ . (i.e. their derivatives of all orders vanish at *o*. e.g.  $e^{-\frac{1}{\|\underline{x}\|^2}}$  Prove:  $\mathfrak{m}^{\infty} = \bigcap_{d \in \mathbb{N}} \mathfrak{m}^d$ . Compute  $\sqrt{\mathfrak{m}^{\infty}}$ .
  - f. An ideal  $I \subset R$  is called radical if  $\sqrt{I} = I$ . (Dis)prove: i. Any radical ideal of  $\mathbb{Z}$  is generated by a prime number. ii. Any radical ideal of k[x, y] has at most two generators. (Hint: 5.b.)
  - g. Give (many) examples of rings with nilpotents. Prove: the ring  $C^r(\mathcal{U})$  has no nilpotents.
  - h. Prove: if  $x \in R$  is nilpotent then 1 x is invertible in R.
  - i. Define the *nilradical* of R as  $nil(R) := \sqrt{(0)}$ . Prove:  $\sqrt{(0)}$  is the union of all the nilpotent elements.
  - j. Prove:  $nil(R_I) = \sqrt{I}/I$ . In particular, the ring  $R_{nil(R)}$  has no nilpotents. Is the ring  $R_{nil(R)}$ necessarily an integral domain?
- 7. (Division with remainder)
  - a. Prove: for any  $a, b \in \mathbb{N}$  there exists the unique presentation a = bq + r, where  $q \in \mathbb{N}$  and  $0 \le r \le b - 1.$
  - b. Prove: for any  $a, b \in k[x]$  there exists the unique presentation a = bq + r, where  $q \in k[x]$  and  $deg_x(r) \le deg_x(b) - 1.$
  - c. Conclude: every ideal in  $\mathbb{k}[x]$  is a principal ideal (i.e. can be generated by one element.)
- 8. Please read Chapter.0 of M.Reid's "Undergraduate Commutative Algebra".