Introduction to Commutative Algebra
 Homework 0
 (to be fully solved before the first lecture)

Commutative algebra is "even more abstract" than linear algebra. It is hard to work with rings/ideals/modules without a pre-acquired minimal package of examples (and the corresponding intuition). This is the current goal.

All our rings will be commutative, unital (with $0 \neq 1$). \mathbb{k} denotes a(ny) field. R denotes a(ny) ring. $\mathbb{k}[[\underline{x}]]:=\mathbb{k}\left[\left[x_{1}, \ldots, x_{n}\right]\right]$ is the ring of formal power series. Given an open subset $\mathcal{U} \subseteq \mathbb{R}^{n}$ we denote by $C^{r}(\mathcal{U})$ the ring of functions on \mathcal{U} that are r-times continuously differentiable. (Here $0 \leq r \leq \infty$.) Denote by $C^{\omega}(\mathcal{U})$ the ring of functions real-analytic on \mathcal{U}. For an open subset $\mathcal{U} \subseteq \mathbb{C}$ denote by $\mathcal{O}(\mathcal{U})$ the ring of function complex-analytic on \mathcal{U}. Given an ideal $I \subsetneq R$ we take the quotient ring R / I.

Questions in cursive are intentionally imprecise.

1. a. Write down the definition of a ring, of an ideal, of a homomorphism of rings.
b. Given a ring R and indeterminates $\underline{x}=\left\{x_{1} \ldots x_{n}\right\}$ write the definition of the rings $R[\underline{x}], R[[\underline{x}]]$.
c. (Dis)Prove: i. $R[\underline{x}]=R\left[x_{1}\right]\left[x_{2}\right] \ldots\left[x_{n}\right]$. ii. $R[[\underline{x}]]=R\left[\left[x_{1}\right]\right]\left[\left[x_{2}\right]\right] \ldots\left[\left[x_{n}\right]\right]$. iii. $\mathbb{k}\left[x_{1}\right]\left[\left[x_{2}\right]\right]=\mathbb{k}\left[\left[x_{2}\right]\right]\left[x_{1}\right]$.
d. Denote by $R^{\times} \subset R$ the subset of all the invertible elements. Prove: R^{\times}is an abelian group. (What is the group operation?)
e. Describe (explicitly) R^{\times}for the following rings: i. $\mathbb{k}[\underline{x}] \quad$ ii. $\mathbb{k}[[\underline{x}]] \quad$ iii. $C^{r}(\mathcal{U}), 0 \leq r \leq \infty, \omega$.
f. Prove: any element of $\mathbb{k}[[x]]$ is presetable as $u \cdot x^{d}$. Here $u \in R^{\times}$and $d \in \mathbb{N}$ are uniquely defined.
g. Let $A \in M a t_{n \times n}(R)$. Prove: A is invertible iff $\operatorname{det}(A) \in R^{\times}$.

Give examples with $R=\mathbb{C}[x]$ where $\operatorname{det}(A)$ has no zeros in \mathbb{C} but A is non-invertible.
2. a. Write down the definition of an integral domain. (We will call this just "a domain".)
b. When are the rings $R[\underline{x}], R[[\underline{x}]]$ domains? (Give a simple necessary and sufficient condition.)
c. Suppose $\mathcal{U} \subseteq \mathbb{C}$ is connected. Is $\mathcal{O}(\mathcal{U})$ a domain?
d. $(0 \leq r \leq \infty)$ Prove: $f \in C^{r}(\mathcal{U})$ is a zero divisor iff the zero locus $f^{-1}(0) \subseteq \mathcal{U}$ has a non-empty interior.
e. Describe (explicitly) the invertible elements of $\mathbb{k}\left[x_{1} \ldots, x_{n}\right], \mathbb{k}\left[\left[x_{1} \ldots, x_{n}\right]\right], C^{r}(\mathcal{U}), 0 \leq r \leq \infty$.
3. a. Given an ideal $I \subset R$ write down the definition of the quotient ring R / I.
b. Let $1 \leq d<\infty$. Define the map Taylor $_{d}: C^{\infty}(-1,1) \rightarrow \mathbb{R}[x] /(x)^{d+1}$ by Taylor-expanding (at 0) up to order d. Prove: Taylor $_{d}$ is a surjective homomorphism of rings. What is its kernel?
c. Define the map Taylor : $C^{\infty}(-1,1) \rightarrow \mathbb{R}[[x]]$ by taking the full Taylor expansion at 0 . What is the kernel of this homomorphism?
Borel's lemma: this homomorphism is surjective.
d. Given a homomorphism of rings, $\phi: S \rightarrow R$, prove: $\operatorname{ker}(\phi) \subset S$ is an ideal. Prove: ϕ factorizes into $S \rightarrow S / \operatorname{ker}(\phi) \rightarrow R$.
4. a. Prove: any homomorphism $\mathbb{k} \rightarrow R$ is injective.
b. Prove: there exists (and unique) homomorphism of rings $\mathbb{Z} \rightarrow R$. Prove: its kernel is the ideal of the form $(n) \subset \mathbb{Z}$, where $n=$: $\operatorname{char}(R)$ is the characteristic of R.
c. Compute $\operatorname{char}(R)$ for the following rings.
i. char $\mathbb{Z}[\underline{x}] /(n)$ for a number $n \in \mathbb{Z} \quad$ ii. $\mathbb{k}[x] \quad$ ii. $\mathbb{k}[[x]] \quad$ iv. $C^{r}(\mathcal{U}) \quad$ v. $\mathcal{O}(\mathcal{U})$.
d. For any ideal I prove: $\operatorname{char} \mathbb{k}[\underline{x}] / I=\operatorname{char}(\mathbb{k})$ and $\operatorname{char} \mathbb{k}[[\underline{x}]] / I=\operatorname{char}(\mathbb{k})$.
5. a. Let $\mathfrak{m}_{p} \subset \mathbb{k}[x, y]$ be the set of all polynomials vanishing at the point $p \in \mathbb{k}^{2}$. Prove: \mathfrak{m}_{p} is an ideal with two generators. Write a couple of generators.
b. Fix three (distinct) points lying on a line in \mathbb{k}^{2}. Let $I \subset \mathbb{k}[x, y]$ be the ideal of all the polynomials vanishing at these points. Prove: $I=\left\langle l, q_{3}\right\rangle$, where l is a linear form, while $(l) \nexists q_{3}$ is a cubic polynomial. (Hint: apply the action $G L(2, \mathbb{k}) \circlearrowright \mathbb{k}^{2}$ to bring these points to a nice position.)
What happens for three points not on one lines?
c. Let $\mathbb{k}=\mathbb{k}$. List (explicitly) all the maximal ideals of $\mathbb{k}[x]$. (Deduce: these maximal ideals correspond to the points of the line \mathbb{k}^{1}.) Prove: any non-zero prime ideal in $\mathbb{k}[x]$ is maximal.
d. Give examples of maximal ideals in $\mathbb{R}[x]$ that are not of the type you have seen in 4.c.
(Can you explain this geometrically?)
e. Take two ideals, $I=\langle x, y\rangle \subset \mathbb{k}[x, y]$ and $J=\langle x-1, y-1\rangle \subset \mathbb{k}[x, y]$. Prove: $I \cap J \supsetneq I \cdot J$. (What is the geometric meaning of $I \cap J$ and $I \cdot J$?)
f. Give (many) examples of prime ideals in $\mathbb{k}[x, y]$ that are not maximal.

g. List all the maximal ideals of \mathbb{Z}. What is the geometry.?
h. Prove: the rings $\mathbb{k}[[\underline{x}]], \mathbb{k}[[x] / J$ have exactly one maximal ideal. What is the geometry.?
i. Prove: i. $\mathbb{k}[x] /\left(x^{2}-1\right) \cong \mathbb{k}[x] /(x-1) \times \mathbb{k}[x] /(x+1) \cong \mathbb{k} \times \mathbb{k}$.
ii. $\mathbb{k}[x] /(x-1)^{2} \not \neq \mathbb{k} \times \mathbb{k}$.
iii. (for $\mathbb{k}=\overline{\mathbb{k}}) \mathbb{k}[x, y] /\left(x^{n}-1, y^{m}-1\right) \cong \underbrace{\mathbb{k} \times \cdots \times \mathbb{k}}_{m n}$.
6. a. The radical of an ideal $I \subset R$ is the subset $\sqrt{I}:=\left\{r \in R \mid r^{d} \in I\right.$ for $\left.d \gg 1\right\}$. Prove: $\sqrt{I} \subset R$ is an ideal.
b. Take $I=\left\langle x^{2}+y^{2}-1, x^{2}-1\right\rangle \subset \mathbb{k}[x, y]$. Compute \sqrt{I}. (What is the geometry?)
c. Suppose $I \supseteq J \supseteq I^{d}$ for some $d \in \mathbb{N}$. Prove: $\sqrt{I}=\sqrt{J}$.
d. Let $\mathfrak{m} \subset C^{\infty}\left(\mathbb{R}^{n}\right)$ be the ideal of functions vanishing at the origin. What are its generators?
e. Denote by $\mathfrak{m}^{\infty} \subset C^{\infty}\left(\mathbb{R}^{n}\right)$ the subset of functions "flat" at $o \in \mathbb{R}^{n}$. (i.e. their derivatives of all orders vanish at o. e.g. $\left.e^{-\frac{1}{\|x\|^{2}}}\right)$ Prove: $\mathfrak{m}^{\infty}=\cap_{d \in \mathbb{N}} \mathfrak{m}^{d}$. Compute $\sqrt{\mathfrak{m}^{\infty}}$.
f. An ideal $I \subset R$ is called radical if $\sqrt{I}=I$. (Dis)prove: i. Any radical ideal of \mathbb{Z} is generated by a prime number. ii. Any radical ideal of $\mathbb{k}[x, y]$ has at most two generators. (Hint: 5.b.)
g. Give (many) examples of rings with nilpotents. Prove: the ring $C^{r}(\mathcal{U})$ has no nilpotents.
h. Prove: if $x \in R$ is nilpotent then $1-x$ is invertible in R.
i. Define the nilradical of R as $\operatorname{nil}(R):=\sqrt{(0)}$. Prove: $\sqrt{(0)}$ is the union of all the nilpotent elements.
j. Prove: $\operatorname{nil}(R / I)=\sqrt{I} / I$. In particular, the ring $R / \operatorname{nil}(R)$ has no nilpotents. Is the ring $R / \operatorname{nil}(R)$ necessarily an integral domain?
7. (Division with remainder)
a. Prove: for any $a, b \in \mathbb{N}$ there exists the unique presentation $a=b q+r$, where $q \in \mathbb{N}$ and $0 \leq r \leq b-1$.
b. Prove: for any $a, b \in \mathbb{k}[x]$ there exists the unique presentation $a=b q+r$, where $q \in \mathbb{k}[x]$ and $\operatorname{deg}_{x}(r) \leq \operatorname{deg}_{x}(b)-1$.
c. Conclude: every ideal in $\mathbb{k}[x]$ is a principal ideal (i.e. can be generated by one element.)
8. Please read Chapter. 0 of M.Reid's "Undergraduate Commutative Algebra".

