Introduction to Commutative Algebra

201.1.7071, Fall 2022, (D.Kerner)

Homework 1

Submission date: 17.11.2022 (preferably by e-mail) Questions to submit: 1.d. 1.f. 2.a.ii. 2.a.iv. 3.c. 3.e. 4.c. 5.c.

Below I, J are ideals, \mathfrak{p} is a prime ideal, \mathfrak{m} is a maximal ideal. $R[[\underline{x}]] := R[[x_1, \ldots, x_n]].$

- 1. a. Prove: $(0) \subset R$ is a maximal ideal iff R is a field.
 - b. Describe all the nilpotents in the ring $\mathbb{k}[x]/(f)$, where $f(x) = \prod (x x_i)^{d_i}$, $x_i \neq x_j$ and $d_i \geq 1$.
 - c. Prove: the ring $R[[\underline{x}]]$ is a domain iff R is a domain.
 - d. Describe all the quotient rings of k[[x]], n = 1 (up to isomorphism).
 - If the quotient is a finite dimensional vector space, give a basis.
 - e. We have introduced the induced topology on $V(I) \subset \mathfrak{m}Spec(R)$. Verify: this is a topology.
 - f. We have partially established the homeomorphism $\mathfrak{m}Spec(\mathbb{R}/I)\cong V(I)\subset\mathfrak{m}Spec(\mathbb{R})$. Write the proof in details.
- 2. a. Given a morphism of rings $\phi : R \to S$. (Dis)Prove:
 - i. $\phi(0) = 0$.
 - ii. $\phi(I) \subset S$ is an ideal for any ideal $I \subset R$.
 - iii. $\phi^{-1}(I) \subset R$ is an ideal for any ideal $I \subset S$.
 - iv. If $I \subset S$ is a prime/maximal ideal then so is $\phi^{-1}(I) \subset R$.
 - b. Suppose a statement in 2.a. is false, does it become true if ϕ is injective/surjective?
- 3. a. For a set of ideals $\{I_{\lambda}\}_{\lambda \in \Lambda}$ write down the definitions of $\bigcap_{\lambda \in \Lambda} I_{\lambda}$ and $\sum_{\lambda \in \Lambda} I_{\lambda}$. Assuming Λ is finite, write down the definition of $\prod_{\lambda \in \Lambda} I_{\lambda} \subset R$. Verify that all these are ideals.

 - b. Prove: $\bigcap_{\lambda \in \Lambda} V(I_{\lambda}) = V(\sum_{\lambda \in \Lambda} I_{\lambda}) \subset \mathfrak{m}Spec(R).$ c. For a finite Λ prove: $\bigcup_{\lambda \in \Lambda} V(I_{\lambda}) = V(\prod_{\lambda \in \Lambda} I_{\lambda}) \subset \mathfrak{m}Spec(R).$ d. (Dis)Prove: i. $I \cdot J = I \cap J.$ ii. If I, J are primes then so is I + J.iii. $I \cup J \subset R$ is an ideal iff $I \subseteq J$ or $J \subseteq I$. (It is worth to use the geometry, 3.b.)
 - e. Given two primes $\mathfrak{p}_1, \mathfrak{p}_2 \subset R$ is $\mathfrak{p}_1 \cap \mathfrak{p}_2$ a prime ideal?
 - f. Let $S \subset R$ a multiplicative set. Is $R \setminus S$ an ideal?
 - g. For two ideals $I, J \subset R$ and a prime $\mathfrak{p} \subset R$ prove: $I \cdot J \subseteq \mathfrak{p}$ iff $I \cap J \subseteq \mathfrak{p}$ iff $(I \subseteq \mathfrak{p} \text{ or } J \subseteq \mathfrak{p})$. What is the geometric interpretation?
- 4. a. Prove: the ring $R/_{nil(R)}$ is reduced.
 - b. Prove: $\mathfrak{m}Spec(R) \cong \mathfrak{m}Spec(R/nil(R))$.
 - c. Establish the universal property: any homomorphism $R \to S$, with S-reduced, factorizes uniquely into $R \to R/nil(R) \to S$.
 - d. Prove: $R^{\times} = R^{\times} + nil(R)$. (Namely, if u is a unit and x is nilpotent then u + x is a unit.)
- 5. a. Let $R \cong R_1 \times R_2$ (the direct product of rings). Prove: R contains non-trivial idempotents.

b. Prove: the (natural) projections $R_1 \stackrel{\pi_1}{\leftarrow} R_1 \times R_2 \stackrel{\pi_1}{\rightarrow} R_2$ are homomorphisms of rings.

Does π_i admit a right inverse? (i.e. a homomorphism $R_i \xrightarrow{s_i} R_1 \times R_2$ satisfying: $\pi_i \circ s_i = Id_{R_i}$.) c. Establish the embedding $\phi : \mathbb{k}[x, y]/(xy) \hookrightarrow \mathbb{k}[x] \oplus \mathbb{k}[y]$.

- d. (More generally) A prime $\mathfrak{p} \subset R$ is called minimal if there is no other prime $\mathfrak{p}' \subsetneq \mathfrak{p}$. Prove: if R is reduced and has only finitely many minimal primes, $\{\mathfrak{p}_i\}$, then $R \hookrightarrow \prod R/\mathfrak{p}_i$.
- e. Use Zorn's lemma to prove: any prime contains a minimal prime.

