Introduction to Commutative Algebra
 Homework 1

Submission date: 17.11.2022 (preferably by e-mail)
Questions to submit: 1.d. 1.f. 2.a.ii. 2.a.iv. 3.c. 3.e. 4.c. 5.c.
Below I, J are ideals, \mathfrak{p} is a prime ideal, \mathfrak{m} is a maximal ideal. $R[[\underline{x}]]:=R\left[\left[x_{1}, \ldots, x_{n}\right]\right]$.

1. a. Prove: $(0) \subset R$ is a maximal ideal iff R is a field.
b. Describe all the nilpotents in the ring $\mathbb{k}[x] /(f)$, where $f(x)=\prod\left(x-x_{i}\right)^{d_{i}}, x_{i} \neq x_{j}$ and $d_{i} \geq 1$.
c. Prove: the ring $R[[\underline{x}]]$ is a domain iff R is a domain.
d. Describe all the quotient rings of $\mathbb{k}[[x]], n=1$ (up to isomorphism).

If the quotient is a finite dimensional vector space, give a basis.
e. We have introduced the induced topology on $V(I) \subset \mathfrak{m} \operatorname{Spec}(R)$. Verify: this is a topology.
f. We have partially established the homeomorphism $\mathfrak{m} \operatorname{Spec}(R / I) \cong V(I) \subset \mathfrak{m} \operatorname{Spec}(R)$.

Write the proof in details.
2. a. Given a morphism of rings $\phi: R \rightarrow S$. (Dis)Prove:
i. $\phi(0)=0$.
ii. $\phi(I) \subset S$ is an ideal for any ideal $I \subset R$.
iii. $\phi^{-1}(I) \subset R$ is an ideal for any ideal $I \subset S$.
iv. If $I \subset S$ is a prime/maximal ideal then so is $\phi^{-1}(I) \subset R$.
b. Suppose a statement in 2.a. is false, does it become true if ϕ is injective/surjective?
3. a. For a set of ideals $\left\{I_{\lambda}\right\}_{\lambda \in \Lambda}$ write down the definitions of $\cap_{\lambda \in \Lambda} I_{\lambda}$ and $\sum_{\lambda \in \Lambda} I_{\lambda}$.

Assuming Λ is finite, write down the definition of $\prod_{\lambda \in \Lambda} I_{\lambda} \subset R$. Verify that all these are ideals.
b. Prove: $\cap_{\lambda \in \Lambda} V\left(I_{\lambda}\right)=V\left(\sum_{\lambda \in \Lambda} I_{\lambda}\right) \subset \mathfrak{m} \operatorname{Spec}(R)$.
c. For a finite Λ prove: $\cup_{\lambda \in \Lambda} V\left(I_{\lambda}\right)=V\left(\prod_{\lambda \in \Lambda} I_{\lambda}\right) \subset \mathfrak{m} \operatorname{Spec}(R)$.
d. (Dis)Prove: i. $I \cdot J=I \cap J . \quad$ ii. If I, J are primes then so is $I+J$. iii. $I \cup J \subset R$ is an ideal iff $I \subseteq J$ or $J \subseteq I$.
(It is worth to use the geometry, 3.b.)
e. Given two primes $\mathfrak{p}_{1}, \mathfrak{p}_{2} \subset R$ is $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}$ a prime ideal?
f. Let $S \subset R$ a multiplicative set. Is $R \backslash S$ an ideal?
g. For two ideals $I, J \subset R$ and a prime $\mathfrak{p} \subset R$ prove: $I \cdot J \subseteq \mathfrak{p}$ iff $I \cap J \subseteq \mathfrak{p}$ iff $(I \subseteq \mathfrak{p}$ or $J \subseteq \mathfrak{p})$. What is the geometric interpretation?
4. a. Prove: the ring $R / n i l(R)$ is reduced.
b. Prove: $\mathfrak{m} \operatorname{Spec}(R) \cong \mathfrak{m} \operatorname{Spec}(R / n i l(R))$.
c. Establish the universal property: any homomorphism $R \rightarrow S$, with S-reduced, factorizes uniquely into $R \rightarrow R / n i l(R) \rightarrow S$.
d. Prove: $R^{\times}=R^{\times}+\operatorname{nil}(R)$. (Namely, if u is a unit and x is nilpotent then $u+x$ is a unit.)
5. a. Let $R \cong R_{1} \times R_{2}$ (the direct product of rings). Prove: R contains non-trivial idempotents.
b. Prove: the (natural) projections $R_{1} \stackrel{\pi_{1}}{\leftarrow} R_{1} \times R_{2} \stackrel{\pi_{1}}{\longrightarrow} R_{2}$ are homomorphisms of rings.

Does π_{i} admit a right inverse? (i.e. a homomorphism $R_{i} \xrightarrow{s_{i}} R_{1} \times R_{2}$ satisfying: $\pi_{i} \circ s_{i}=I d_{R_{i}}$.)
c. Establish the embedding $\phi: \mathbb{k}[x, y] /(x y) \hookrightarrow \mathbb{k}[x] \oplus \mathbb{k}[y]$.
d. (More generally) A prime $\mathfrak{p} \subset R$ is called minimal if there is no other prime $\mathfrak{p}^{\prime} \subsetneq \mathfrak{p}$. Prove: if R is reduced and has only finitely many minimal primes, $\left\{\mathfrak{p}_{i}\right\}$, then $R \hookrightarrow \prod^{R / p_{i}}$.
e. Use Zorn's lemma to prove: any prime contains a minimal prime.

