Introduction to Commutative Algebra

201.1.7071, Fall 2022, (D.Kerner)

Homework 10

Not for submission.

University of

By $A \sim B$ we denote the left-right equivalence of matrices, see q.3 of hwk.4. Recall: every PID is a UFD.

- 1. a. Let $A \in Mat_{n \times n}(R)$ and suppose $det(A) \in R$ is non-nilpotent. Denote by S the multiplicative group, generated by det(A). The morphism $A: \mathbb{R}^n \to \mathbb{R}^n$ induces the morphism $S^{-1}A: S^{-1}\mathbb{R}^{\oplus n} \to \mathbb{R}^n$ $S^{-1}R^{\oplus n}$. Prove: $S^{-1}A$ is an injective morphism.
 - b. Establish an isomorphism of $R_{\mathfrak{p}}$ -modules: $(R/I)_{\mathfrak{p}} \cong R_{\mathfrak{p}}/I_{\mathfrak{p}}$, for any prime $\mathfrak{p} \subset R$.
- 2. Let M be a f.g. R-module.
 - a. Prove: if R is Noetherian then M is finitely-presented.
 - b. Prove: $ann(S^{-1}R \cdot M) = S^{-1}R \cdot ann(M) \subset S^{-1}R$ for any multiplicative set $0 \notin S \subset R$.
 - c. Prove: M = 0 iff $M_{\mathfrak{m}} = 0$ for any maximal ideal $\mathfrak{m} \subset R$.
 - (Hint: for the direction \Leftarrow it is enough to prove: $ann(M) \not\subseteq \mathfrak{m}$ for any $\mathfrak{m} \subset R$.)
 - d. Prove: $I = J \subset R$ (for two ideals) iff $I_{\mathfrak{m}} = J_{\mathfrak{m}} \subset R_{\mathfrak{m}}$ for every $\mathfrak{m} \subset R$.
 - e. Prove: $R_I \cong R_J$ (isomorphism of *R*-modules) iff $I = J \subset R$. Show that this does not hold if $R_I \cong R_J$ is only an isomorphism of rings.
 - f. Suppose R is Noetherian and $\mathfrak{m} \subset R$ a maximal ideal. Prove: $(R/I)_{\mathfrak{m}} \cong (R/J)_{\mathfrak{m}}$ iff $S^{-1} \cdot I = S^{-1} \cdot J$, where the multiplicative set S is generated by a non-nilpotent element $g \in R$.
- 3. Let (R, \mathfrak{m}) be alocal ring, let $M \in mod R$, with a presentation M = coker(A), for some $A \in Mat_{m \times n}(R)$. a. Suppose $\oplus R/I_i \cong \oplus R/J_j$ (as *R*-modules). Prove (after a permutation of indices): $I_1 = J_1 \subset R$, Show that this is not true over a non-local PID. $I_2 = J_2 \subset R, \ldots$
 - b. Define the "elementary column-operations" on a matrix: $C_i \rightsquigarrow u \cdot C_i$ (for $u \in \mathbb{R}^{\times}$); $C_i \leftrightarrow C_j$; $C_i \rightsquigarrow C_i + x \cdot C_i$ (for any $x \in R$). Prove: any $A \in GL_n(R)$ is a product of elementary matrices.
 - c. i. Prove: A is a minimal presentation of M iff $Im(A) \subseteq \mathfrak{m} \cdot R^{\oplus m}$ and $ker(A) \subseteq \mathfrak{m} \cdot R^{\oplus n}$.
 - ii. Prove: every finitely-presented module admits a minimal presentation. More precisely: $A \sim$ $\mathbb{I} \oplus [\tilde{A} | \mathbb{O}], \text{ where } \tilde{A} \in Mat_{\tilde{m} \times \tilde{n}}(\mathfrak{m}), \text{ and } ker(\tilde{A}) \subseteq \mathfrak{m} \cdot R^{\oplus \tilde{n}}.$
 - iii. Prove: if A is a minimal presentation then $m = \dim_{R_{/_{\mathfrak{m}}}} M_{/_{\mathfrak{m}} \cdot M}$. Moreover, m is the minimal number of generators of M (and is independent of choices). Prove: n is also well-defined.
 - iv. We have proved in the class: the minimal presentation is unique (up to the left-right equivalence). Go over the details.
- 4. Let $A \in Mat_{m \times n}(R)$, with $m \leq n$. The j'th determinantal ideal $I_j(A) \subseteq R$ is generated by the determinants of all $j \times j$ -minors of A.

 - a. Verify: $R := I_0(A) \supseteq I_1(A) \supseteq \cdots \supseteq I_m(A) \supseteq I_{m+1}(A) := 0.$ b. Compute $\{I_j(A)\}$ for the matrices: $\begin{bmatrix} x^3+6 & x^2-7\\ x^2+7 & x^3-6 \end{bmatrix} \in Mat_{2\times 2}(\Bbbk[x]), \begin{bmatrix} \sum_{j=0}^{\infty} x^{j+2} & 1+x\\ \sum_{j=0}^{\infty} (-x^j) & 1-x \end{bmatrix} \in Mat_{2\times 2}(\Bbbk[x]]).$
 - c. Let $R = \Bbbk[\underline{x}], \ \Bbbk = \bar{\Bbbk}$. Prove: $p \in V(I_j(A))$ iff $rank(A|_p) < j$. (Here $A|_p = A \otimes R'_{\mathfrak{m}_p} \in Mat(R'_{\mathfrak{m}_p})$.)
 - d. Prove: $I_j(UAV) = I_j(A)$ for any $U \in GL(m, R), V \in GL(n, R)$.
 - (Hint: it is enough to prove $I_i(UAV) \subseteq I_i(A)$). Reduce this to the local case, via q.2.d. Then use q.3.b.)
- 5. Let R-PID.

- a. Given elements $\alpha_1, \alpha_2 \in R$, fix a generator $(\alpha) = (\alpha_1, \alpha_2) \subset R$. Prove: $\begin{bmatrix} \alpha_1 & 0 \\ 0 & \alpha_2 \end{bmatrix} \sim \begin{bmatrix} \alpha & 0 \\ 0 & \frac{\alpha_1 \alpha_2}{\alpha} \end{bmatrix}$. b. For any diagonal matrix prove: $diag[\alpha_1 \dots \alpha_m] \sim diag[\lambda_1 \dots \lambda_m]$, where $(\lambda_1) \supseteq (\lambda_2) \supseteq \cdots$. c. Prove the corresponding statement for the module $\oplus B^{(\ell_1)}$.

- c. Prove the corresponding statement for the module $\oplus R/(\alpha_i)$. d. Given coprime elements $\{b_i\}$ in R prove: $R/(\prod b_i^{p_i}) \cong \oplus R/(b_i^{p_i})$ (isomorphism of R-algebras).
- e. Express the invariants factors $\{(\lambda_i)\}$ of A via the ideals $\{I_i(A)\}$. In particular, the ideals $\{(\lambda_i)\}$ are uniquely-defined.
- f. Define a morphism $\phi : \mathbb{Z}^3 \to \mathbb{Z}^4$ by $(a, b, c) \to (4a 3b, 6a + 2c, 10a + 6b + 8c, 3b + 2c)$. Write down the invariant and the primary decomposition of the module $coker[A] \in mod-\mathbb{Z}$.
- g. Find the Smith normal form for the matrices of q.4.b.
- h. Prove: \mathbb{Q} is an indecomposable \mathbb{Z} -module.

Any contradiction to the structure theorem of modules over a PID?

i. Prove the uniqueness part of that structure theorem: $M_1 \cong M_2$ iff $rank(M_1) = rank(M_2)$ and their invariant factors coincide.