Introduction to Commutative Algebra

201.1.7071, Fall 2022, (D.Kerner) Homework 10

Not for submission.

By $A \sim B$ we denote the left-right equivalence of matrices, see q. 3 of hwk.4. Recall: every PID is a UFD.

1. a. Let $A \in \operatorname{Mat}_{n \times n}(R)$ and suppose $\operatorname{det}(A) \in R$ is non-nilpotent. Denote by S the multiplicative group, generated by $\operatorname{det}(A)$. The morphism $A: R^{n} \rightarrow R^{n}$ induces the morphism $S^{-1} A: S^{-1} R^{\oplus n} \rightarrow$ $S^{-1} R^{\oplus n}$. Prove: $S^{-1} A$ is an injective morphism.
b. Establish an isomorphism of $R_{\mathfrak{p}}$-modules: $(R / I)_{\mathfrak{p}} \cong R_{\mathfrak{p}} / I_{\mathfrak{p}}$, for any prime $\mathfrak{p} \subset R$.
2. Let M be a f.g. R-module.
a. Prove: if R is Noetherian then M is finitely-presented.
b. Prove: $\operatorname{ann}\left(S^{-1} R \cdot M\right)=S^{-1} R \cdot \operatorname{ann}(M) \subset S^{-1} R$ for any multiplicative set $0 \notin S \subset R$.
c. Prove: $M=0$ iff $M_{\mathfrak{m}}=0$ for any maximal ideal $\mathfrak{m} \subset R$.
(Hint: for the direction \Leftarrow it is enough to prove: $\operatorname{ann}(M) \nsubseteq \mathfrak{m}$ for any $\mathfrak{m} \subset R$.)
d. Prove: $I=J \subset R$ (for two ideals) iff $I_{\mathfrak{m}}=J_{\mathfrak{m}} \subset R_{\mathfrak{m}}$ for every $\mathfrak{m} \subset R$.
e. Prove: $R / I \cong R / J$ (isomorphism of R-modules) iff $I=J \subset R$.

Show that this does not hold if $R / I \cong R / J$ is only an isomorphism of rings.
f. Suppose R is Noetherian and $\mathfrak{m} \subset R$ a maximal ideal. Prove: $(R / I)_{\mathfrak{m}} \cong(R / J)_{\mathfrak{m}}$ iff $S^{-1} \cdot I=S^{-1} \cdot J$, where the multiplicative set S is generated by a non-nilpotent element $g \in R$.
3. Let (R, \mathfrak{m}) bealocal ring, let $M \in \bmod -R$, with a presentation $M=\operatorname{coker}(A)$, for some $A \in M a t_{m \times n}(R)$. a. Suppose $\oplus R / I_{i} \cong \oplus R / J_{j}$ (as R-modules). Prove (after a permutation of indices): $I_{1}=J_{1} \subset R$, $I_{2}=J_{2} \subset R, \ldots \quad$ Show that this is not true over a non-local PID.
b. Define the "elementary column-operations" on a matrix: $C_{i} \rightsquigarrow u \cdot C_{i}\left(\right.$ for $\left.u \in R^{\times}\right) ; C_{i} \leftrightarrow C_{j}$; $C_{i} \rightsquigarrow C_{i}+x \cdot C_{j}$ (for any $x \in R$). Prove: any $A \in G L_{n}(R)$ is a product of elementary matrices.
c. i. Prove: A is a minimal presentation of M iff $\operatorname{Im}(A) \subseteq \mathfrak{m} \cdot R^{\oplus m}$ and $\operatorname{ker}(A) \subseteq \mathfrak{m} \cdot R^{\oplus n}$.
ii. Prove: every finitely-presented module admits a minimal presentation. More precisely: $A \sim$ $\mathbb{I} \oplus[\tilde{A} \mid \mathbb{O}]$, where $\tilde{A} \in \operatorname{Mat}_{\tilde{m} \times \tilde{n}}(\mathfrak{m})$, and $\operatorname{ker}(\tilde{A}) \subseteq \mathfrak{m} \cdot R^{\oplus \tilde{n}}$.
iii. Prove: if A is a minimal presentation then $m=\operatorname{dim}_{R / \mathfrak{m}} M / \mathfrak{m} \cdot M$. Moreover, m is the minimal number of generators of M (and is independent of choices).
Prove: n is also well-defined.
iv. We have proved in the class: the minimal presentation is unique (up to the left-right equivalence). Go over the details.
4. Let $A \in \operatorname{Mat}_{m \times n}(R)$, with $m \leq n$. The j 'th determinantal ideal $I_{j}(A) \subseteq R$ is generated by the determinants of all $j \times j$-minors of A.
a. Verify: $R=: I_{0}(A) \supseteq I_{1}(A) \supseteq \cdots \supseteq I_{m}(A) \supseteq I_{m+1}(A):=0$.
b. Compute $\left\{I_{j}(A)\right\}$ for the matrices: $\left[\begin{array}{ll}x^{3}+6 & x^{2}-7 \\ x^{2}+7 & x^{3}-6\end{array}\right] \in M a t_{2 \times 2}(\mathbb{k}[x]),\left[\begin{array}{cc}\sum_{j=0}^{\infty} x^{j+2} & 1+x \\ \sum_{j=0}^{\infty}\left(-x^{j}\right) & 1-x\end{array}\right] \in M a t_{2 \times 2}(\mathbb{k}[[x]])$.
c. Let $R=\mathbb{k}[\underline{x}], \mathbb{k}=\overline{\mathbb{k}}$. Prove: $p \in V\left(I_{j}(A)\right)$ iff $\operatorname{rank}\left(\left.A\right|_{p}\right)<j$. (Here $\left.A\right|_{p}=A \otimes R / \mathfrak{m}_{p} \in \operatorname{Mat}\left(R / \mathfrak{m}_{p}\right)$.)
d. Prove: $I_{j}(U A V)=I_{j}(A)$ for any $U \in G L(m, R), V \in G L(n, R)$.
(Hint: it is enough to prove $I_{j}(U A V) \subseteq I_{j}(A)$. Reduce this to the local case, via q.2.d. Then use q.3.b.)
a. Given elements $\alpha_{1}, \alpha_{2} \in R$, fix a generator $(\alpha)=\left(\alpha_{1}, \alpha_{2}\right) \subset R$. Prove: $\left[\begin{array}{cc}\alpha_{1} & 0 \\ 0 & \alpha_{2}\end{array}\right] \sim\left[\begin{array}{cc}\alpha & 0 \\ 0 & \frac{\alpha_{1} \alpha_{2}}{\alpha}\end{array}\right]$.
b. For any diagonal matrix prove: $\operatorname{diag}\left[\alpha_{1} \ldots \alpha_{m}\right] \sim \operatorname{diag}\left[\lambda_{1} \ldots \lambda_{m}\right]$, where $\left(\lambda_{1}\right) \supseteq\left(\lambda_{2}\right) \supseteq \cdots$.
c. Prove the corresponding statement for the module $\oplus R /\left(\alpha_{i}\right)$.
d. Given coprime elements $\left\{b_{i}\right\}$ in R prove: $R /\left(\prod b_{i}^{p_{i}}\right) \cong \oplus R /\left(b_{i}^{p_{i}}\right)$ (isomorphism of R-algebras).
e. Express the invariants factors $\left\{\left(\lambda_{i}\right)\right\}$ of A via the ideals $\left\{I_{j}(A)\right\}$.

In particular, the ideals $\left\{\left(\lambda_{i}\right)\right\}$ are uniquely-defined.
f. Define a morphism $\phi: \mathbb{Z}^{3} \rightarrow \mathbb{Z}^{4}$ by $(a, b, c) \rightarrow(4 a-3 b, 6 a+2 c, 10 a+6 b+8 c, 3 b+2 c)$. Write down the invariant and the primary decomposition of the module $\operatorname{coker}[A] \in \bmod -\mathbb{Z}$.
g. Find the Smith normal form for the matrices of q.4.b.
h. Prove: \mathbb{Q} is an indecomposable \mathbb{Z}-module.

Any contradiction to the structure theorem of modules over a PID?
i. Prove the uniqueness part of that structure theorem: $M_{1} \cong M_{2}$ iff $\operatorname{rank}\left(M_{1}\right)=\operatorname{rank}\left(M_{2}\right)$ and their invariant factors coincide.

