Introduction to Commutative Algebra 201.1.7071, Fall 2022, (D.Kerner)

Homework 2 Submission date: 24.11.2022

University of

- Questions to submit: 1.b. 1.d. 2.d. 2.f. 2.h.ii. 4.a. 4.b.ii. 4.b.iii. 5.a. (preferably by e-mail)
 - 1. a. Take a (non-trivial) idempotent $e \in R$. Prove: the function corresponding to e is identically one on some connected components of $\mathfrak{m}Spec(R)$ and vanishes on the other components.
 - b. Write down all the idempotents in the rings:

ii. $k[x]/((x-x_1)(x-x_2)(x-x_3))$, here x_1, x_2, x_3 are all distinct. i. Z/(12)

- c. Compute the number of idempotents in the following rings: i. $\mathbb{Z}_{(\prod p_i^{d_i})}$, here the primes $\{p_i\}$ are pairwise distinct. ii. $k[x]/(\prod (x-x_i)^{d_i})$, here the points $\{x_i\}$ are pairwise distinct.
- d. Suppose $e_1 \ldots e_n \in R$ are idempotents. Prove: the ideal $(e_1, \ldots, e_n) \subset R$ is principal and is (Hint: how to orthogonalize the idempotents?) generated by an idempotent.
- 2. a. (Dis)Prove: i. $R_{I}[\underline{x}] \cong R[\underline{x}]_{I \cdot R[\underline{x}]}$. ii. $R_{I}[[\underline{x}]] \cong R[\underline{x}]_{I \cdot R[[\underline{x}]]}$. b. Suppose $\{I \subseteq J_{\alpha}\}_{\alpha \in A}$ for some ideals $I, \{J_{\alpha}\}$. Prove: $\cap [J_{\alpha}] = [\cap J_{\alpha}] \subseteq \mathbb{R}/I$. Disprove " $\cap [J_{\alpha}] = [\cap J_{\alpha}]$ " if one does not assume $\{I \subseteq J_{\alpha}\}_{\alpha \in A}$.
 - c. We have proved in the class: $\sqrt{I} = \bigcap_{I \subset \mathfrak{p}} \mathfrak{p}$. Go over all the details. Disprove: $\sqrt{I} = \bigcap_{I \subset \mathfrak{m}} \mathfrak{m}$.
 - d. Suppose $I, J \subset R$ are radicals. (Dis)Prove: i. $I \cap J$ is radical. ii. I + J is radical.
 - e. Prove: all the primes of the ring $R_1 \times R_2$ are of the form $\mathfrak{p}_1 \times R_2$ or $R_1 \times \mathfrak{p}_2$.
 - f. For any ring prove: $R = R^{\times} \coprod (\cup_{\mathfrak{m} \subset R} \mathfrak{m})$ (the union over all the maximals). Geometry: given $f \in R$, if the associated "function" $\overline{\mathfrak{m}Spec}(R) \to \ldots$ has no zeros, then f is invertible.
 - g. Define the "Jacobson radical" of a ring as $rad(R) := \cap \mathfrak{m}$ (the intersection of all the maximals). Compute rad(R) for: i. $k[\underline{x}]$ ii. $k[[\underline{x}]]$ iii. $k[[x]] \times k[[y]]$ iv. $R_1 \times R_2$.
 - h. Prove: i. $rad(R) \supseteq nil(R)$. ii. $R^{\times} + rad(R) = R^{\times}$. iii. If $R^{\times} + I = R^{\times}$ then $I \subseteq rad(R)$.
- 3. a. Prove: i. (a) = (b) iff a|b and b|a. ii. For R a domain: (a) = (b) iff a = ub for some $u \in \mathbb{R}^{\times}$. iii. Disprove ii. over non-domains. iii. If a|b and (a) = (a'), (b) = (b') then a'|b'.
 - b. Give an example of a prime but non-irreducible, and an example of an irreducible but non-prime.
- 4. a. Prove: the ring $C^{\omega}(-\epsilon, \epsilon)$ is non-local for any $\epsilon > 0$.
 - b. Suppose R is local. (Dis)Prove: i. R_I is local. ii. R[x] is local. iii. R[[x]] is local.

 - c. Describe explicitly the rings: i. $k[x, y]_{(x,y)}$ ii. $k[x, y]_{(x)}$. (What is the geometry?) d. (For those who learned Complex Functions) Prove: the ring $\mathbb{C}\{\underline{x}\}$ is local. (In fact $\mathbb{C}\{x\}$ = $\mathbb{C}\{x\}^{\times} + (x)$.) Deduce: the ring $\mathbb{R}\{x\}$ is local.
- 5. a. Write the (most natural) basis of the k-vector space k[x]. Is this a basis of the space k[[x]]? Prove: $\mathbb{k}[[x]]$ is not countably generated over \mathbb{k} .
 - b. We have stated and partially proved several "naturality/universality" properties of the extension $R \hookrightarrow Frac(R)$. Write down all the proofs.
 - c. For a domain R take the field of fraction $R \hookrightarrow Frac(R)$) and a polynomial $f \in R[x]$.
 - i. Suppose $\frac{b}{c} \in Frac(R)$ is a root of $f(x) = a_0 + \cdots + a_n x^n \in R[x]$, and moreover $(bc) = (b) \cdot (c)$. Prove: $a_0 \in (b)$ and $a_n \in (c)$.
 - ii. For R-UFD prove: if $f(x) \in R[x]$ is monic then it has a root in R iff it has a root in Frac(R).