Introduction to Commutative Algebra
 201.1.7071, Fall 2022, (D.Kerner)
 Homework 2

Submission date: 24.11.2022
Questions to submit: 1.b. 1.d. 2.d. 2.f. 2.h.ii. 4.a. 4.b.ii. 4.b.iii. 5.a. (preferably by e-mail)

1. a. Take a (non-trivial) idempotent $e \in R$. Prove: the function corresponding to e is identically one on some connected components of $\mathfrak{m} \operatorname{Spec}(R)$ and vanishes on the other components.
b. Write down all the idempotents in the rings:
i. $Z /(12) \quad$ ii. $\mathbb{k}[x] /\left(\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\right)$, here x_{1}, x_{2}, x_{3} are all distinct.
c. Compute the number of idempotents in the following rings: i. $\mathbb{Z} /\left(\prod p_{i}^{d_{i}}\right)$, here the primes $\left\{p_{i}\right\}$ are pairwise distinct. ii. $\mathbb{k}[x] /\left(\Pi\left(x-x_{i}\right)^{d_{i}}\right)$, here the points $\left\{x_{i}\right\}$ are pairwise distinct.
d. Suppose $e_{1} \ldots e_{n} \in R$ are idempotents. Prove: the ideal $\left(e_{1}, \ldots, e_{n}\right) \subset R$ is principal and is generated by an idempotent.
(Hint: how to orthogonalize the idempotents?)
2. a. (Dis)Prove: i. $R / I[\underline{x}] \cong R[\underline{x}] / I \cdot R[\underline{x}]$. ii. $R / I[[\underline{x}]] \cong R[\underline{x}] / I \cdot R[[\underline{x}]]$.
b. Suppose $\left\{I \subseteq J_{\alpha}\right\}_{\alpha \in A}$ for some ideals $I,\left\{J_{\alpha}\right\}$. Prove: $\cap\left[J_{\alpha}\right]=\left[\cap J_{\alpha}\right] \subseteq R / I$.

Disprove " $\cap\left[J_{\alpha}\right]=\left[\cap J_{\alpha}\right]$ " if one does not assume $\left\{I \subseteq J_{\alpha}\right\}_{\alpha \in A}$.
c. We have proved in the class: $\sqrt{I}=\cap_{I \subseteq \mathfrak{p} \mathfrak{p}}$. Go over all the details. \quad Disprove: $\sqrt{I}=\cap_{I \subseteq \mathfrak{m}^{\mathfrak{m}}}$.
d. Suppose $I, J \subset R$ are radicals. (Dis)Prove: i. $I \cap J$ is radical. ii. $I+J$ is radical.
e. Prove: all the primes of the ring $R_{1} \times R_{2}$ are of the form $\mathfrak{p}_{1} \times R_{2}$ or $R_{1} \times \mathfrak{p}_{2}$.
f. For any ring prove: $R=R^{\times} \coprod\left(\cup_{\left.\mathfrak{m} \subset R^{\mathfrak{m}}\right)}\right.$ (the union over all the maximals). Geometry: given $f \in R$, if the associated "function" $\mathfrak{m} \operatorname{Spec}(R) \rightarrow \ldots$ has no zeros, then f is invertible.
g. Define the "Jacobson radical" of a ring as $\operatorname{rad}(R):=\cap \mathfrak{m}$ (the intersection of all the maximals). Compute $\operatorname{rad}(R)$ for: \quad i. $\mathbb{k}[\underline{x}] \quad$ ii. $\mathbb{k}[[\underline{x}]] \quad$ iii. $\mathbb{k}[[x]] \times \mathbb{k}[[y]] \quad$ iv. $R_{1} \times R_{2}$.
h. Prove: i. $\operatorname{rad}(R) \supseteq \operatorname{nil}(R)$. ii. $R^{\times}+\operatorname{rad}(R)=R^{\times}$. iii. If $R^{\times}+I=R^{\times}$then $I \subseteq \operatorname{rad}(R)$.
3. a. Prove: i. $(a)=(b)$ iff $a \mid b$ and $b \mid a$.
iii. Disprove ii. over non-domains.
b. Give an example of a prime but non-irreducible, and an example of an irreducible but non-prime.
4. a. Prove: the ring $C^{\omega}(-\epsilon, \epsilon)$ is non-local for any $\epsilon>0$.
b. Suppose R is local. (Dis)Prove: i. R / I is local. ii. $R[x]$ is local. iii. $R[[x]]$ is local.
c. Describe explicitly the rings:
i. $\mathbb{k}[x, y]_{(x, y)}$
ii. $\mathbb{k}[x, y]_{(x)}$. (What is the geometry?)
d. (For those who learned Complex Functions) Prove: the ring $\mathbb{C}\{\underline{x}\}$ is local. (In fact $\mathbb{C}\{x\}=$ $\left.\mathbb{C}\{x\}^{\times}+(x).\right)$ Deduce: the ring $\mathbb{R}\{x\}$ is local.
5. a. Write the (most natural) basis of the \mathbb{k}-vector space $\mathbb{k}[x]$. Is this a basis of the space $\mathbb{k}[[x]]$? Prove: $\mathbb{k}[[x]]$ is not countably generated over \mathbb{k}.
b. We have stated and partially proved several "naturality/universality" properties of the extension $R \hookrightarrow \operatorname{Frac}(R)$. Write down all the proofs.
c. For a domain R take the field of fraction $R \hookrightarrow \operatorname{Frac}(R))$ and a polynomial $f \in R[x]$.
i. Suppose $\frac{b}{c} \in \operatorname{Frac}(R)$ is a root of $f(x)=a_{0}+\cdots+a_{n} x^{n} \in R[x]$, and moreover $(b c)=(b) \cdot(c)$. Prove: $a_{0} \in(b)$ and $a_{n} \in(c)$.
ii. For R-UFD prove: if $f(x) \in R[x]$ is monic then it has a root in R iff it has a root in $\operatorname{Frac}(R)$.

