Introduction to Commutative Algebra
 201.1.7071, Fall 2022, (D.Kerner)
 Homework 3

Submission date: 01.12.2022
Questions to submit: 1. 3.a. 3.c. 4.a. 4.b. 6.a. 6.c. 7.b. (preferably by e-mail)

1. Are the rings $\mathbb{k}[x, y] /\left(x^{2}+y^{2}-1\right)$ and $\mathbb{k}[z]$ isomorphic?
2. (Chinese remainder theorem) Ideals $I, J \subset R$ are called co-maximal if $I+J=R$. (Give examples.)
a. Suppose the ideals I_{1}, \ldots, I_{n} are pairwise co-maximal. Prove: i. The ideals $I_{1},\left(I_{2} \cdots I_{n}\right)$ are co-maximal. \quad ii. $\cap I_{j}=\prod I_{j}$.
iii. $R / \Pi I_{j} \cong \Pi R / I_{j}$.
(Hint: start from $n=2$.)
b. Let R be a PID. Prove: the elements $x, y \in R$ are coprime (i.e. share no common prime factors) iff the ideals $(x),(y) \subset R$ are co-maximal.
3. a. List the minimal prime ideals in the ring $\mathbb{k}[x] /(f)$, with $\mathbb{k}=\overline{\mathbb{k}}$.
b. Prove: R is a domain iff (0) is the only minimal prime ideal.
c. Suppose R has a finite number of minimal primes, $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}$. Take the (natural) projection $\phi: R \rightarrow \prod R / \mathfrak{p}_{i}$ Prove: $\operatorname{ker}(\phi)=\operatorname{nil}(R)$.
Prove: $\phi(R)$ intersects non-trivially all the ideals of the type $0 \times \cdots \times 0 \times R / \mathfrak{p}_{i} \times 0 \times \cdots \times 0$.
4. a. Prove: R is local iff all the non-units form an ideal iff exists $\mathfrak{m} \subset R$ s.t. $1+\mathfrak{m} \subseteq R^{\times}$.
b. Prove: $\mathbb{Z}_{(p) /(p) \cdot \mathbb{Z}_{(p)}}^{\sim} \mathbb{Z} /(p)$.
5. Let $\left\{M_{i}\right\}$ be submodules of M. Prove: $M=\oplus M_{i}$ iff one of the following holds:
a. $M=\sum M_{i}$, and the presentation $m=\sum m_{i}$ is unique.
b. $M=\sum M_{i}$ and $M_{i} \cap \sum_{j \neq i} M_{j}=\{0\}$.
c. The homomorphism $\oplus M_{i} \rightarrow M$, defined by $\underline{m} \rightarrow \sum m_{j}$, is $1: 1$.
6. a. Let $A=\left[\begin{array}{lll}0 & y & x \\ y & x & 0\end{array}\right] \in \operatorname{Mat}_{2 \times 3}(\mathbb{k}[x, y])$. Consider A as a homomorphism $R^{3} \rightarrow R^{2}$. (Dis)Prove: i. $\operatorname{Im}(A) \supset(x, y) \cdot R^{2} . \quad$ ii. $\operatorname{Im}(A) \supset(x, y)^{2} \cdot R^{2} . \quad$ iii. The module $k e r(A)$ is cyclic.

Consider $\operatorname{coker}(A)$ as a \mathbb{k}-vector space and compute $\operatorname{dim}_{\mathbb{k}} \operatorname{coker}(A)$.
b. The annihilator of a module is $\operatorname{ann}(M):=\{r \in R \mid r \cdot M=\{0\}\}$. Prove:
i. $\operatorname{ann}(M) \subseteq R$ is an ideal. ii. If $M \supseteq N$ then $\operatorname{ann}(M) \subseteq \operatorname{ann}(N)$ and $\operatorname{ann}(N / M) \supseteq \operatorname{ann}(N)$.

Give examples with $\operatorname{ann}(M)=\operatorname{ann}(N / M), \operatorname{ann}(M) \subsetneq \operatorname{ann}(N / M), \operatorname{ann}(M) \supsetneq \operatorname{ann}(N / M)$.
c. Prove: M is (naturally) a module over $R / a n n(M)$. In particular:
i. $\oplus \mathbb{Z} / n_{i} \mathbb{Z}$ is a module over $\mathbb{Z} / \operatorname{lcm}\left\{n_{i}\right\} \mathbb{Z}$. ii. For $R^{n} \xrightarrow{A} R^{n} \operatorname{coker}[A]$ is a module over $R /(\operatorname{det}(A))$.
d. Prove: $\operatorname{ann}(M)$ is the largest among the ideals satisfying: $M \in \operatorname{Mod}-R / I$.
e. Take any $0 \neq V_{\mathbb{k}}$ and some $T \in \operatorname{Hom}_{\mathbb{k}}(V, V)$. Prove: V is a module over $\mathbb{k}[T]$ (the ring of polynomials in T). What is the annihilator of V ?
7. Denote by $\operatorname{Hom}_{R}(M, N)$ the set of all the homomorphisms. Verify: $\operatorname{Hom}_{R}(M, N)$ is an R-module.
a. Prove: $\operatorname{Hom}_{R}(R, M) \cong M$.
b. Compute: $\operatorname{Hom}_{\mathbb{k}[x, y]}\left(\mathbb{k}[x, y] /\left(x^{2}-y^{2}\right), \mathbb{k}[x, y] /\left(x^{2}+y^{2}\right)\right)$, here $\operatorname{char}(\mathbb{k}) \neq 2, \quad \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} /(6), \mathbb{Z} /(3))$, $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} /(p), \mathbb{Z} /(q))$, here $p, q \in \mathbb{Z}$ are co-prime.
c. Compute $\operatorname{Hom}_{R}(R / I, R)$ for R a domain.

