## Introduction to Commutative Algebra

201.1.7071, Fall 2022, (D.Kerner)

## Homework 5

Submission date: 15.12.2022 Questions to submit: 1.c. 1.e. 2.a. 2.c. 2.f. 3.b. 4.a. 4.b.iii. 4.c.i. (by e-mail)

We often consider a matrix  $A \in Mat_{m \times n}(R)$  as the homomorphism of modules  $R^{\oplus n} \to R^{\oplus m}$ .

1. a. Given  $M_2 \subset M_1 \subset M$  prove:  $M/M_1 \cong M/M_2/M_1/M_2$ .

- b. Prove: any homomorphism  $\phi: M \to N$  induces the homomorphism  $\bar{\phi}: M/_{I \cdot M} \to N/_{I \cdot N}$  of  $R/_{I}$ -modules. When is  $\bar{\phi} = 0$ ? When is  $\bar{\phi}$  injective?
- c. Is a cylic module necessarily free?
- d. Prove: the ring k[[x]] is not countably-generated as a k[x]-module. (Compare to q.5.a of hwk.2)
- e. Take  $R = \Bbbk[t]$  and the homomorphisms:  $R \to \Bbbk[\underline{x}], t \to f(\underline{x})$ , and  $R \to \Bbbk[\underline{y}], t \to g(\underline{y})$ . Prove:  $\Bbbk[\underline{x}] \otimes_R \Bbbk[\underline{y}] \cong \Bbbk[\underline{x}, \underline{y}]/(f(\underline{x}) - g(y))$ .
- 2. Below R is a domain.
  - a. Compute the rank of the  $\mathbb{Z}$ -module  $\mathbb{Z}^{\oplus 2} \oplus \mathbb{Z}/(3) \oplus \mathbb{Z}/(5)$ .
  - b. Consider an ideal  $0 \neq I \subset R$  as an *R*-module. Compute rank(I).
  - c. i. Let  $\mathbb{O} \neq A = [a, b, c] \in Mat_{1 \times 3}(R)$ . Compute the ranks of *R*-modules Im(A) and coker(A). ii. Compute the ranks of *R*-modules  $Im(A^t)$  and  $coker(A^t)$ .
  - d. Take  $R \hookrightarrow Frac(R) =: \mathbb{K}$ , accordingly  $Mat_{m \times n}(R) \hookrightarrow Mat_{m \times n}(\mathbb{K})$ , thus  $A \rightsquigarrow A \otimes \mathbb{K} \in Mat_{m \times n}(\mathbb{K})$ . (Dis)Prove:  $rank(Im(A)) = rank(A \otimes \mathbb{K})$ . (The latter rank is in the sense of  $Lin.Alg.\mathbb{K}$ )
  - e. Express  $rank(M \otimes N)$  via rank(M), rank(N).
  - f. Prove: if M is generated by  $n < \infty$  elements, then any (n + 1)-elements of M are linearly dependent. (We did this in the class)

Deduce: rank(M)=the maximal number of linearly independent elements in M.

3. a. Go over all the detail of our proof of Cayley-Hamilton theorem. Why is the proof " $det(A \cdot \mathbb{I} - A) = 0$ " wrong? How did we convert this into a valid proof?

b. Here is another prooof. Write the details. Given  $A \in Mat_{n \times n}(R)$  expand its characteristic polynomial,  $p_A(t) := det[t\mathbb{1} - A] = \sum_{j=0}^n p_j t^j$ . Observe:  $p_n = 1$ . Present  $p_A(t) \cdot \mathbb{1} = (t\mathbb{1} - A) \cdot (t\mathbb{1} - A)^{\vee}$ . Expand the adjugate,  $(t\mathbb{1} - A)^{\vee} =: \sum_{j=0}^{n-1} B_j t^j$ , for some matrices  $B_j$  over R. Write down explicit polynomials  $p_j \cdot \mathbb{1} = pol_j(A, \{B_i\})$ . Now expand  $\sum_{j=0}^n A^j \cdot p_j \mathbb{1}$ , and verify that this sum vanishes. (And all  $\{B_i\}$  disappear.)

- 4. a. Let  $R = \Bbbk[x, y]_{(x,y)}$  and fix some elements  $p_3, q_3, r_3 \in (x, y)^3$ . Prove:  $(x, y)^2 = (x^2 p_3, y^2 q_3, xy r_3) \subset R$ . b. i. Consider  $\mathbb{Q}$  as a  $\mathbb{Z}$ -module. Prove:  $(n) \cdot \mathbb{Q} = \mathbb{Q}$ .
  - ii. Consider  $k[x, \frac{1}{x}]$  as a k[x]-module. Prove:  $(x) \cdot k[x, \frac{1}{x}] = k[x, \frac{1}{x}]$ .
  - iii. Consider  $\mathfrak{m}^{\infty}$  as a  $C^{\infty}(\mathbb{R}^1)$ -module. (See q.6.e. of homework 0.) Prove:  $\mathfrak{m} \cdot \mathfrak{m}^{\infty} = \mathfrak{m}^{\infty}$ .
  - iv. Does this contradict the Nakayama-lemma?
  - c. i. Let  $0 \neq M, N \in mod R$  for a local ring R. Prove:  $M \otimes_R N \neq 0$ .
    - ii. Give a counterexample when R is non-local or one of M, N is not f.g.

