Introduction to Commutative Algebra
 201.1.7071, Fall 2022, (D.Kerner)
 Homework 5

Submission date: 15.12.2022
Questions to submit: 1.c. 1.e. 2.a. 2.c. 2.f. 3.b. 4.a. 4.b.iii. 4.c.i. (by e-mail)
We often consider a matrix $A \in \operatorname{Mat}_{m \times n}(R)$ as the homomorphism of modules $R^{\oplus n} \rightarrow R^{\oplus m}$.

1. a. Given $M_{2} \subset M_{1} \subset M$ prove: $M / M_{1} \cong M / M_{2} / M_{1} / M_{2}$.
b. Prove: any homomorphism $\phi: M \rightarrow N$ induces the homomorphism $\bar{\phi}: M / I \cdot M \rightarrow N / I \cdot N$ of R / I-modules. When is $\bar{\phi}=0$? When is $\bar{\phi}$ injective?
c. Is a cylic module necessarily free?
d. Prove: the ring $\mathbb{k}[[x]]$ is not countably-generated as a $\mathbb{k}[x]$-module. (Compare to q.5.a of hwk.2)
e. Take $R=\mathbb{k}[t]$ and the homomorphisms: $R \rightarrow \mathbb{k}[\underline{x}], t \rightarrow f(\underline{x})$, and $R \rightarrow \mathbb{k}[\underline{y}], t \rightarrow g(\underline{y})$. Prove: $\mathbb{k}[\underline{x}] \otimes_{R} \mathbb{k}[\underline{y}] \cong \mathbb{k}[\underline{x}, \underline{y}] /(f(\underline{x})-g(\underline{y}))$.
2. Below R is a domain.
a. Compute the rank of the \mathbb{Z}-module $\mathbb{Z}^{\oplus 2} \oplus \mathbb{Z} /(3) \oplus \mathbb{Z} /(5)$.
b. Consider an ideal $0 \neq I \subset R$ as an R-module. Compute $\operatorname{rank}(I)$.
c. i. Let $\mathbb{O} \neq A=[a, b, c] \in M a t_{1 \times 3}(R)$. Compute the ranks of R-modules $\operatorname{Im}(A)$ and $\operatorname{coker}(A)$.
ii. Compute the ranks of R-modules $\operatorname{Im}\left(A^{t}\right)$ and $\operatorname{coker}\left(A^{t}\right)$.
d. Take $R \hookrightarrow \operatorname{Frac}(R)=: \mathbb{K}$, accordingly $\operatorname{Mat}_{m \times n}(R) \hookrightarrow \operatorname{Mat}_{m \times n}(\mathbb{K})$, thus $A \rightsquigarrow A \otimes \mathbb{K} \in M a t_{m \times n}(\mathbb{K})$. (Dis)Prove: $\operatorname{rank}(\operatorname{Im}(A))=\operatorname{rank}(A \otimes \mathbb{K})$. (The latter rank is in the sense of Lin.Alg. \mathbb{K})
e. Express $\operatorname{rank}(M \otimes N)$ via $\operatorname{rank}(M), \operatorname{rank}(N)$.
f. Prove: if M is generated by $n<\infty$ elements, then any $(n+1)$-elements of M are linearly dependent. (We did this in the class)
Deduce: $\operatorname{rank}(M)=$ the maximal number of linearly independent elements in M.
3. a. Go over all the detail of our proof of Cayley-Hamilton theorem. Why is the proof " $\operatorname{det}(A \cdot \mathbb{I}-A)=0$ " wrong? How did we convert this into a valid proof?
b. Here is another prooof. Write the details. Given $A \in M a t_{n \times n}(R)$ expand its characteristic polynomial, $p_{A}(t):=\operatorname{det}[t \mathbb{I}-A]=\sum_{j=0}^{n} p_{j} t^{j}$. Observe: $p_{n}=1$.
Present $p_{A}(t) \cdot \mathbb{I}=(t \mathbb{I}-A) \cdot(t \mathbb{I}-A)^{\vee}$. Expand the adjugate, $(t \mathbb{I}-A)^{\vee}=: \sum_{j=0}^{n-1} B_{j} t^{j}$, for some matrices B_{j} over R. Write down explicit polynomials $p_{j} \cdot \mathbb{I}=\operatorname{pol}_{j}\left(A,\left\{B_{i}\right\}\right)$. Now expand $\sum_{j=0}^{n} A^{j} \cdot p_{j} \mathbb{I}$, and verify that this sum vanishes. (And all $\left\{B_{i}\right\}$ disappear.)
4. a. Let $R=\mathbb{k}[x, y]_{(x, y)}$ and fix some elements $p_{3}, q_{3}, r_{3} \in(x, y)^{3}$. Prove: $(x, y)^{2}=\left(x^{2}-p_{3}, y^{2}-q_{3}, x y-r_{3}\right) \subset R$.
b. i. Consider \mathbb{Q} as a \mathbb{Z}-module. Prove: $(n) \cdot \mathbb{Q}=\mathbb{Q}$.
ii. Consider $\mathbb{k}\left[x, \frac{1}{x}\right]$ as a $\mathbb{k}[x]$-module. Prove: $(x) \cdot \mathbb{k}\left[x, \frac{1}{x}\right]=\mathbb{k}\left[x, \frac{1}{x}\right]$.
iii. Consider \mathfrak{m}^{∞} as a $C^{\infty}\left(\mathbb{R}^{1}\right)$-module. (See q.6.e. of homework 0 .) Prove: $\mathfrak{m} \cdot \mathfrak{m}^{\infty}=\mathfrak{m}^{\infty}$.
iv. Does this contradict the Nakayama-lemma?
c. i. Let $0 \neq M, N \in \bmod -R$ for a local ring R. Prove: $M \otimes_{R} N \neq 0$.
ii. Give a counterexample when R is non-local or one of M, N is not f.g.
