Introduction to Commutative Algebra
 201.1.7071, Fall 2022, (D.Kerner) Homework 6

Submission date: 24.12.2022
Questions to submit: 1.a. 1.c. 1.d. 2.a. 2.b.ii. 2.c. 3.a. 4.b. (by e-mail)

1. Take a local ring (R, \mathfrak{m}) and a morphism of f.g. modules $\phi: M \rightarrow N$.
a. Suppose the morphism $\bar{\phi}: M / \mathfrak{m} \cdot M \rightarrow N / \mathfrak{m} \cdot N$ is surjective. Prove: ϕ is surjective.

Suppose $\bar{\phi}$ is injective, is ϕ injective?
b. Suppose a morphism $\phi: M \rightarrow M$ is surjective. Prove: ϕ is an isomorphism.

Hint: fix some generators of M, take the presentation matrix $[\phi] \in \operatorname{Mat}_{n \times n}(R)$. Prove: $k e r[\phi]=$ $0 \subset R^{n}$. Conclude that $\operatorname{ker}(\phi)=0 \subset M$ (by the Cayley-Hamilton theorem).
c. Take another morphism $\epsilon: M \rightarrow \mathfrak{m} \cdot N$. Prove: if ϕ is an isomorphism then $\phi+\epsilon$ is an isomorphism.
d. A set of generators $\left\{v_{i}\right\}$ of M is called "a minimal generating set" if no v_{i} is an R-linear combination of the others. Prove: a finite set is a minimal generating set iff their images $\left\{\bar{v}_{i}\right\}$ form a basis of the vector space $M / \mathfrak{m} \cdot M$.
2. a. Suppose the subset $V(I) \subset \mathbb{k}^{n}$ does not contain the origin. Identify the ideal $\mathbb{k}[\underline{x}]_{(\underline{x})} \cdot I \subseteq \mathbb{k}[\underline{x}]_{(\underline{x})}$.
b. For $R=\mathbb{k}[x, y] /(x y(y-x))$ identify the ring $S^{-1} R$ in the following cases. (What is the geometry?)
i. S is generated by x.
ii. S is generated by x, y.
iii. S is generated by $R \backslash(y)$.
c. Prove: every intermediate $\operatorname{ring} \mathbb{Z} \subset R \subset \mathbb{Q}$ is obtained as the ring of fractions, $R=S^{-1} \mathbb{Z}$.
(Hint: $\mathbb{Z}\left[\frac{3}{7}\right]=\mathbb{Z}\left[\frac{1}{7}\right]$.) Give examples that are not isomorphic to the ring $\mathbb{Z}\left[\frac{1}{d}\right]$.
d. Suppose $R=R_{1} \times R_{2}$. Present the projection $R \rightarrow R_{1}$ as the passage to the ring of fractions, $R \rightarrow S^{-1} R$, for some S.
e. Verify: the relation used to define $S^{-1} R$ is indeed an equivalence relation, and $S^{-1} R$ is a (commutative, unital) ring.
f. [Why we could not define $S^{-1} R$ just as $\left\{\frac{a}{s} \left\lvert\, \frac{a_{1}}{s_{1}} \sim \frac{a_{2}}{s_{2}}\right.\right.$ if $\left.a_{1} s_{2}=a_{2} s_{1}\right\}$?]

Prove: if S contains zero divisors then " $\frac{a_{1}}{s_{1}} \sim \frac{a_{2}}{s_{2}}$ if $a_{1} s_{2}=a_{2} s_{1}$ " is not an equivalence relation.
g. Prove: the (canonical) map $R \rightarrow S^{-1} R$ is an isomorphism iff $S \subseteq R^{\times}$.

When is $R \rightarrow S^{-1} R$ an embedding?
3. The homomorphism $\phi: R \rightarrow S^{-1} R$ induces the restriction and extension of scalars,

$$
S^{-1} R \supset I \rightsquigarrow \phi^{-1}(I) \subset R \quad \text { and } \quad R \supset I \rightsquigarrow \phi(I) \cdot S^{-1} R
$$

a. Let $I=\left(x^{4}-y^{5}, y^{6}-x^{7}\right) \subset \mathbb{k}[[x, y]]$ and $S=\left\langle x^{3}+y^{3}\right\rangle$. Prove: $I \cdot S^{-1} R=S^{-1} R$. (The geometry?)
b. For any $I \subset S^{-1} R$ prove: $S^{-1} R \cdot \phi\left(\phi^{-1}(I)\right)=I \subset S^{-1} R$.
c. For any $I \subset R$ prove: $\phi^{-1}\left(S^{-1} R \cdot \phi(I)\right) \supseteq I$. Give an example with inequality.
d. Suppose $\mathfrak{p} \cap S=\varnothing$ for a prime $\mathfrak{p} \subset R$. Prove: $S^{-1} R \cdot \phi(\mathfrak{p}) \subset S^{-1} R$ is prime.
4. a. Suppose R is a domain and the multiplicative set S is generated by f. Prove: the restriction $S^{-1} R \supset I \rightsquigarrow I \cap R$ induces the embedding $\mathfrak{m} \operatorname{Spec}\left(S^{-1} R\right) \hookrightarrow \mathfrak{m} \operatorname{Spec}(R)$, whose image is $\mathfrak{m} \operatorname{Spec}(R) \backslash$ $V(f)$.
b. Let R a domain and $0 \notin S \nsubseteq R^{\times}$a multiplicative set. Prove: the R-module $R\left[S^{-1}\right]$ is not f.g.
c. Given $M \in M o d-R$ define $S^{-1} M:=M \otimes_{R} S^{-1} R$. Write the definition via the equivalence relation, $S^{-1} M=M \times S /(\ldots)$. Verify that this is the same module.
d. Compute $S^{-1} M$ for $M=\oplus \mathbb{Z} /\left(n_{i}\right) \in M o d-\mathbb{Z}$ and $S=\{a, b\}$ for some $0 \neq a, b \in \mathbb{Z}$.

