Introduction to Commutative Algebra 201.1.7071, Fall 2022, (D.Kerner)

Homework 6 Submission date: 24.12.2022

Questions to submit: 1.a. 1.c. 1.d. 2.a. 2.b.ii. 2.c. 3.a. 4.b. (by e-mail)

- 1. Take a local ring (R, \mathfrak{m}) and a morphism of f.g. modules $\phi: M \to N$.
 - a. Suppose the morphism $\bar{\phi}: M_{\mathfrak{m}} \to N_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is surjective. Prove: ϕ is surjective. Suppose ϕ is injective, is ϕ injective?
 - b. Suppose a morphism $\phi: M \to M$ is surjective. Prove: ϕ is an isomorphism. Hint: fix some generators of M, take the presentation matrix $[\phi] \in Mat_{n \times n}(R)$. Prove: $ker[\phi] =$ $0 \subset \mathbb{R}^n$. Conclude that $ker(\phi) = 0 \subset M$ (by the Cayley-Hamilton theorem).
 - c. Take another morphism $\epsilon: M \to \mathfrak{m} \cdot N$. Prove: if ϕ is an isomorphism then $\phi + \epsilon$ is an isomorphism.
 - d. A set of generators $\{v_i\}$ of M is called "a minimal generating set" if no v_i is an R-linear combination of the others. Prove: a finite set is a minimal generating set iff their images $\{\bar{v}_i\}$ form a basis of the vector space $M/_{\mathfrak{m}} \cdot M$.
- 2. a. Suppose the subset $V(I) \subset \mathbb{k}^n$ does not contain the origin. Identify the ideal $\mathbb{k}[\underline{x}]_{(x)} \cdot I \subseteq \mathbb{k}[\underline{x}]_{(x)}$. b. For R = k[x, y]/(xy(y-x)) identify the ring $S^{-1}R$ in the following cases. (What is the geometry?)
 - ii. S is generated by x, y. iii. S is generated by $R \setminus (y)$. i. S is generated by x. c. Prove: every intermediate ring $\mathbb{Z} \subset R \subset \mathbb{Q}$ is obtained as the ring of fractions, $R = S^{-1}\mathbb{Z}$.
 - (Hint: $\mathbb{Z}\begin{bmatrix}\frac{3}{7}\end{bmatrix} = \mathbb{Z}\begin{bmatrix}\frac{1}{7}\end{bmatrix}$.) Give examples that are not isomorphic to the ring $\mathbb{Z}\begin{bmatrix}\frac{1}{7}\end{bmatrix}$.)
 - d. Suppose $R = R_1 \times R_2$. Present the projection $R \to R_1$ as the passage to the ring of fractions, $R \to S^{-1}R$, for some S.
 - e. Verify: the relation used to define $S^{-1}R$ is indeed an equivalence relation, and $S^{-1}R$ is a (commutative, unital) ring.
 - f. [Why we could not define $S^{-1}R$ just as $\{\frac{a}{s} | \frac{a_1}{s_1} \sim \frac{a_2}{s_2} \text{ if } a_1s_2 = a_2s_1\}$?] Prove: if S contains zero divisors then $(\frac{a_1}{s_1} \sim \frac{a_2}{s_2} \text{ if } a_1s_2 = a_2s_1)$ " is not an equivalence relation. g. Prove: the (canonical) map $R \to S^{-1}R$ is an isomorphism iff $S \subseteq R^{\times}$.
 - When is $R \to S^{-1}R$ an embedding?
- 3. The homomorphism $\phi: R \to S^{-1}R$ induces the restriction and extension of scalars,

 - $\begin{array}{l} S^{-1}R \supset I \xrightarrow{} \phi^{-1}(I) \subset R \quad \text{and} \quad R \supset I \xrightarrow{} \phi(I) \cdot S^{-1}R.\\ \text{a. Let } I = (x^4 y^5, y^6 x^7) \subset \Bbbk[[x, y]] \text{ and } S = \langle x^3 + y^3 \rangle. \text{ Prove: } I \cdot S^{-1}R = S^{-1}R. \text{ (The geometry?)} \end{array}$ b. For any $I \subset S^{-1}R$ prove: $S^{-1}R \cdot \phi(\phi^{-1}(I)) = I \subset S^{-1}R$.

Give an example with inequality.

- c. For any $I \subset R$ prove: $\phi^{-1}(S^{-1}R \cdot \phi(I)) \supseteq I$.
- d. Suppose $\mathfrak{p} \cap S = \emptyset$ for a prime $\mathfrak{p} \subset R$. Prove: $S^{-1}R \cdot \phi(\mathfrak{p}) \subset S^{-1}R$ is prime.
- 4. a. Suppose R is a domain and the multiplicative set S is generated by f. Prove: the restriction $S^{-1}R \supset I \rightsquigarrow I \cap R$ induces the embedding $\mathfrak{m}Spec(S^{-1}R) \hookrightarrow \mathfrak{m}Spec(R)$, whose image is $\mathfrak{m}Spec(R) \setminus \mathbb{R}$ V(f).
 - b. Let R a domain and $0 \notin S \not\subseteq R^{\times}$ a multiplicative set. Prove: the *R*-module $R[S^{-1}]$ is not f.g.
 - c. Given $M \in Mod R$ define $S^{-1}M := M \otimes_R S^{-1}R$. Write the definition via the equivalence relation, $S^{-1}M = M \times S/(\dots)$. Verify that this is the same module. d. Compute $S^{-1}M$ for $M = \bigoplus \mathbb{Z}/(n_i) \in Mod - \mathbb{Z}$ and $S = \{a, b\}$ for some $0 \neq a, b \in \mathbb{Z}$.