Introduction to Commutative Algebra

201.1.7071, Fall 2022, (D.Kerner)

Homework 7 Submission date: 01.01.2023

Questions to submit: 1.b. 1.e. 2.c. 2.f. 3.a. 3.c. 4.b. 4.c. 5.c. (by e-mail)

- 1. a. Suppose a multiplicative set $S \subset R$ is generated by a (non-nilpotent) zero divisor f. Take $I = 0 :_R (f) = \{a | a \cdot f = 0\} \subset R$. Prove: $S^{-1}R \cong R/I[\frac{1}{f}]$. (What is the geometry?)
 - b. Let $\mathfrak{m}_1, \mathfrak{m}_2 \subset R$ be distinct maximal ideals. Consider $R_{\mathfrak{m}_1}$ as R-module. Identify the localized module $(R_{\mathfrak{m}_1})_{\mathfrak{m}_2}$.
 - c. Let $A \in Mat_{n \times n}(R)$ such that $det(A) \in R$ is a non-nilpotent element. Let the multiplicative set S be generated by det(A). Identify the modules $S^{-1} \cdot ker(A)$, $S^{-1} \cdot coker(A)$. (What is the geometry? Note: det(A) can be a zero divisor.)
 - d. Let $R_1 = \mathbb{k}[x,y]/(xy(x-y))$, $R_2 = \mathbb{k}[x,y]/(y^2 x^4)$. Give an example of multiplicative sets $0 \notin S_1 \subset R_1$, $0 \notin S_2 \subset R_2$ satisfying: $S_1^{-1}R_1 \cong S_2^{-1}R_2$, and this ring is non-local.
 - e. Fix an ideal $I \subset R$ and a multiplicative set $0 \notin S \subset R$, with the image $0 \notin \overline{S} \subset R/I$. Establish the isomorphism of $S^{-1}R$ -modules: $\overline{S}^{-1}R/I \cong S^{-1}R/S^{-1}I$. (What is the geometry?)
- 2. We have postulated the closed sets on $\operatorname{Spec}(R)$ as V(I).
 - a. Prove: this defines a topology on Spec(R).
 - b. Suppose $f \in R$ is nilpotent. Identify V(f).
 - c. For any subset $X \subset Spec(R)$ prove: $\overline{X} = V(\cap_{\{\mathfrak{p}\}\in X}\mathfrak{p})$.
 - In particular, $\{\mathfrak{m}\} = V(\mathfrak{m}) \subset Spec(R)$ and these are the only closed points. d. Let \mathbb{k} be \mathbb{R} or \mathbb{C} . Find the (Zariski) closure in $Spec(\mathbb{k}[x, y])$ of the following sets:
 - i. $\{(x,y)| (y-1)(y-x+1)(x+y+1) = 0, xy(x+y) \neq 0\}$. ii. $\{(x,y)| (y-1)(y-x+1)(x+y+1) = 0, xy(x+y) \neq 0\}$. ii. $\{(x,y)| y = sin(x)\}$. e. Prove: if $I \subsetneq J$ then $V(I) \supseteq V(J)$. Give an example with V(I) = V(J).
 - f. Let $R = k[x]_{(x)}$. "Analyze" Spec(R). What are the points, closed sets, residue fields? Take the multiplicative set S generated by x. Identify $S^{-1}R$ and $Spec(S^{-1}R)$.
- 3. For any $f \in R$ define "the basic open set" as $\mathcal{U}_f := Spec(R) \setminus V(f)$.
 - a. Describe the sets $\mathcal{U}_x, \mathcal{U}_y \subseteq Spec(\Bbbk[x,y]/(xy))$.
 - b. Verify (for finite intersections): $\cap \mathcal{U}_{f_i} = \mathcal{U}_{\prod f_i}$.
 - c. Prove: the basic opens form a *base* of the Zariski topology. Namely: any open subset of Spec(R) is a union of basic opens.
- 4. To a homomorphism of rings $\phi: R \to S$ we have associated the map of spaces, $\phi^*: Spec(S) \to Spec(R)$. a. Identify (geometrically) the maps corresponding to: $\Bbbk[x] \hookrightarrow \Bbbk[x, y]; R \to R/I; \&[x] \to \Bbbk[x, y]/(f)$.
 - b. Prove: the map ϕ^* is continuous.
 - c. Prove (for S-reduced): the closure of the image is $Im(\phi^*) = V(ker(\phi)) \subseteq Spec(R)$.
 - d. Suppose S is a domain. What is the image of the generic point of S?
- 5. Fix a module $M \in Mod$ -R. An element $v \in M$ is called torsion if $r \cdot v = 0$ for a non-zero-divisor $r \in R$. Denote the set of all the torsion elements by Torsion(M).
 - a. Let $R = \mathbb{Z}$, thus M is an abelian group. Characterize the torsion elements.
 - b. Verify: Torsion(M) is a submodule, and if M is free then $Torsion(M) = \{0\}$.
 - c. Let $R = k[x,y]/(x \cdot y)^2$, $N = k[x,y]/(x)^2$ and $M = k[x,y]/(x^2,xy,y^2)$. Compute Torsion(N), Torsion(M).
 - d. Prove: $M/_{Torsion(M)}$ is a torsion-free module, i.e. $Torsion(M/_{Torsion(M)}) = 0$.