Introduction to Commutative Algebra
 201.1.7071, Fall 2022, (D.Kerner)
 Homework 7

Submission date: 01.01.2023
Questions to submit: 1.b. 1.e. 2.c. 2.f. 3.a. 3.c. 4.b. 4.c. 5.c. (by e-mail)

1. a. Suppose a multiplicative set $S \subset R$ is generated by a (non-nilpotent) zero divisor f.

Take $I=0:_{R}(f)=\{a \mid a \cdot f=0\} \subset R$. Prove: $S^{-1} R \cong R /\left[\left[\frac{1}{f}\right]\right.$. (What is the geometry?)
b. Let $\mathfrak{m}_{1}, \mathfrak{m}_{2} \subset R$ be distinct maximal ideals. Consider R / \mathfrak{m}_{1} as R-module. Identify the localized module $\left(R / \mathfrak{m}_{1}\right)_{\mathfrak{m}_{2}}$.
c. Let $A \in \operatorname{Mat}_{n \times n}(R)$ such that $\operatorname{det}(A) \in R$ is a non-nilpotent element. Let the multiplicative set S be generated by $\operatorname{det}(A)$. Identify the modules $S^{-1} \cdot \operatorname{ker}(A), S^{-1} \cdot \operatorname{coker}(A)$.
(What is the geometry? Note: $\operatorname{det}(A)$ can be a zero divisor.)
d. Let $R_{1}=\mathbb{k}[x, y] /(x y(x-y)), R_{2}=\mathbb{k}[x, y] /\left(y^{2}-x^{4}\right)$. Give an example of multiplicative sets $0 \notin S_{1} \subset$ $R_{1}, 0 \notin S_{2} \subset R_{2}$ satisfying: $S_{1}^{-1} R_{1} \cong S_{2}^{-1} R_{2}$, and this ring is non-local.
e. Fix an ideal $I \subset R$ and a multiplicative set $0 \notin S \subset R$, with the image $0 \notin \bar{S} \subset R / I$. Establish the isomorphism of $S^{-1} R$-modules: $\bar{S}^{-1} R / I \cong S^{-1} R / S^{-1} I$. (What is the geometry?)
2. We have postulated the closed sets on $\operatorname{Spec}(R)$ as $V(I)$.
a. Prove: this defines a topology on $\operatorname{Spec}(R)$.
b. Suppose $f \in R$ is nilpotent. Identify $V(f)$.
c. For any subset $X \subset \operatorname{Spec}(R)$ prove: $\bar{X}=V\left(\cap_{\{\mathfrak{p}\} \in X} \mathfrak{p}\right)$.

In particular, $\{\mathfrak{m}\}=V(\mathfrak{m}) \subset \operatorname{Spec}(R)$ and these are the only closed points.
d. Let \mathbb{k} be \mathbb{R} or \mathbb{C}. Find the (Zariski) closure in $\operatorname{Spec}(\mathbb{k}[x, y])$ of the following sets:
i. $\{(x, y) \mid(y-1)(y-x+1)(x+y+1)=0, x y(x+y) \neq 0\}$. \quad ii. $\{(x, y) \mid y=\sin (x)\}$.
e. Prove: if $I \subsetneq J$ then $V(I) \supseteq V(J)$. Give an example with $V(I)=V(J)$.
f. Let $R=\mathbb{k}[x]_{(x)}$. "Analyze" $\operatorname{Spec}(R)$. What are the points, closed sets, residue fields?

Take the mutliplicative set S generated by x. Identify $S^{-1} R$ and $\operatorname{Spec}\left(S^{-1} R\right)$.
3. For any $f \in R$ define "the basic open set" as $\mathcal{U}_{f}:=\operatorname{Spec}(R) \backslash V(f)$.
a. Describe the sets $\mathcal{U}_{x}, \mathcal{U}_{y} \subseteq \operatorname{Spec}(\mathbb{k}[x, y] /(x y))$.
b. Verify (for finite intersections): $\cap \mathcal{U}_{f_{i}}=\mathcal{U}_{\Pi f_{i}}$.
c. Prove: the basic opens form a base of the Zariski topology.

Namely: any open subset of $\operatorname{Spec}(R)$ is a union of basic opens.
4. To a homomorphism of rings $\phi: R \rightarrow S$ we have associated the map of spaces, $\phi^{*}: \operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R)$.
a. Identify (geometrically) the maps corresponding to: $\mathbb{k}[x] \hookrightarrow \mathbb{k}[x, y] ; R \rightarrow R / I ; \mathbb{k}[x] \rightarrow \mathbb{k}[x, y] /(f)$.
b. Prove: the map ϕ^{*} is continuous.
c. Prove (for S-reduced): the closure of the image is $\overline{\operatorname{Im}\left(\phi^{*}\right)}=V(\operatorname{ker}(\phi)) \subseteq \operatorname{Spec}(R)$.
d. Suppose S is a domain. What is the image of the generic point of S ?
5. Fix a module $M \in \operatorname{Mod}-R$. An element $v \in M$ is called torsion if $r \cdot v=0$ for a non-zero-divisor $r \in R$. Denote the set of all the torsion elements by Torsion (M).
a. Let $R=\mathbb{Z}$, thus M is an abelian group. Characterize the torsion elements.
b. Verify: $\operatorname{Torsion}(M)$ is a submodule, and if M is free then $\operatorname{Torsion}(M)=\{0\}$.
c. Let $R=\mathbb{k}[x, y] /(x \cdot y)^{2}, N=\mathbb{k}[x, y] /(x)^{2}$ and $M=\mathbb{k}[x, y] /\left(x^{2}, x y, y^{2}\right)$. Compute $\operatorname{Torsion}(N)$, Torsion(M).
d. Prove: $M / \operatorname{Torsion}(M)$ is a torsion-free module, i.e. $\operatorname{Torsion}(M / \operatorname{Torsion}(M))=0$.

