Introduction to Commutative Algebra

201.1.7071, Fall 2022, (D.Kerner)

Homework 8 Submission date: 08.01.2023 Hit Marine Contraction of the New York

- Questions to submit: 1.b. 1.f. 2.b. 2.d. 3.b. 3.c. 4.c. 5.b. (by e-mail)
- 1. a. Give a ring-automorphism of $\mathbb{C}[x]$, which is not a \mathbb{C} -algebra automorphism.
 - b. Take a finitely generated multiplicative set $0 \notin S \subset R$. Prove: $S^{-1}R$ is a f.g. *R*-algebra. (Compare to q.4.b. of hwk.6)
 - c. Prove: the $\Bbbk[x]$ -algebra $\Bbbk[[x]]$ is not countably generated. (Compare to q.1.d of hwk.5)
 - d. Under which condition on \mathbb{k} is the $\mathbb{k}[x]$ -algebra $\mathbb{k}[x]_{(x)}$ countably-generated?
 - e. Denote by \mathbb{F}_2 the field with two variables. Denote $\mathbb{F}_4 := \mathbb{F}_2[x]/(x^2 + x + 1)$.
 - i. Verify: \mathbb{F}_4 is a field. (Prove: any finite domain is a field.)
 - ii. Identify the algebra $\mathbb{F}_4 \otimes_{\mathbb{F}_2} \mathbb{F}_4$. Is this a domain?
 - f. Suppose R is a domain/UFD/PID. Prove: $S^{-1}R$ is a domain/UFD/PID.
 - g. Starting from \mathbb{Z} or $\Bbbk[x]$ give an uncountable number of non-isomorphic PID's.
- 2. Let R be a Noetherian ring.
 - a. (Dis)Prove: i. $S^{-1}R$ is Noetherian for a multiplicative set $0 \notin S$. ii. R/I is Noetherian. iii. Any subring of R is Noetherian. iv. Any f.g. algebra over R is Noetherian.
 - b. Prove: the ring $R[[\underline{x}]]$ is Noetherian. (Follow the proof of the Hilbert basis theorem. Be careful with infinite series.)
 - c. Prove: any intersection of closed sets, $\cap_j V(I_j) \subseteq Spec(R)$, stabilizes.
 - d. Prove: for any closed subset $V(I) \subseteq Spec(R)$ and any open cover $V(I) \subset \cup \mathcal{U}_i$ there exists a finite subcover.
 - e. Show that c. and d. do not hold for $R = C^{\infty}(\mathbb{R}^1), R = C^{\omega}(\mathbb{R}^1)$.
- 3. Let $0 \to L \to M \xrightarrow{\phi} N \to 0$ be a s.e.s. of modules.
 - a. Prove: M is f.g. iff L, N are f.g. (For the direction \Rightarrow assume R is Noetherian.)
 - b. (*R*-Noetherian) For two submodules $M_1, M_2 \subset M$ prove: M_1, M_2 are f.g. iff $M_1 + M_2$ and $M_1 \cap M_2$ are f.g.
 - c. For $M_1, M_2 \subset M$ (dis)prove: if $M_1 \cap L = M_2 \cap L$ and $\phi(M_1) = \phi(M_2)$ then $M_1 = M_2$.
 - d. (Dis)Prove: $0 \rightarrow Torsion(L) \rightarrow Torsion(M) \rightarrow Torsion(N) \rightarrow 0$ is an exact sequence. (See q.5. of hwk.7.)
 - e. Take an exact sequence of k-vector spaces: $0 \to V_1 \to \cdots \to V_n \to 0$. Prove: $\sum (-1)^i dim_k(V_i) = 0$.
 - f. Take an exact sequence of modules over a domain: $0 \to M_1 \to \cdots \to M_n \to 0$. Prove: $\sum (-1)^i rank(M_i) = 0$. (Hint: verify that the sequence $0 \to M_1 \otimes Frac(R) \to \cdots \to M_n \otimes Frac(R) \to 0$ is exact.)
- 4. a. Prove: any exact sequence of vector spaces splits.
 - b. We have proved in the class half of the spliting criterion of exact sequences. Prove the other half.
 - c. Give an example of s.e.s. $0 \to L \to M \to N \to 0$, where $M \cong L \oplus N$, but the sequence does not split.
 - d. Prove: any f.g. module over a Noetherian ring is presentable as $R^n \xrightarrow{A} R^m \to M \to 0$. (Here A is called "a presentation matrix".)
- 5. a. Let $M \in Mod$ -R and $0 \notin S \subset R$ a multiplicative set. Prove: $M = S^{-1}M$ iff $M \in Mod$ - $S^{-1}R$.
 - b. Suppose an *R*-module *M* is not finitely generated. (Dis)Prove: rank(M) > 0.
 - c. Given *R*-modules $M \subsetneq N$, (dis)prove: $rank(M) \leqq rank(N)$.
 - d. Prove: $S^{-1}M = 0$ iff $S \cap ann(M) \neq \emptyset$.