Introduction to Commutative Algebra

201.1.7071, Fall 2022, (D.Kerner)

Homework 9

Submission date: 15.01.2023

Questions to submit: 1.a. 1.b.ii. 1.b.iii. 1.d. 2.a. 2.c. 2.d. 3.a. 3.d. (by e-mail)

- 1. a. Take a short exact sequence $0 \to L \xrightarrow{\phi} M \xrightarrow{\psi} N \to 0$ and submodules $M_1, M_2 \subset M$. (Dis)Prove: if $\psi(M_1) = \psi(M_2)$ and $\phi^{-1}(M_1) = \phi^{-1}(M_2)$ then $M_1 = M_2$.

 - b. (Dis)Prove: i. $S^{-1}(\bigcap_{j\in J}M_j) = \bigcap_{j\in J}S^{-1}M_j$ (for J finite) ii. $S^{-1}(\sum_{j\in J}M_j) = \sum_{j\in J}S^{-1}M_j$ (for any J) iii. $S^{-1}(\prod_{j\in J}M_j) = \prod_{j\in J}S^{-1}M_j$ (for any J) c. Take an ideal $I \subset R$. Prove: if R is a domain, then the module $I \in Mod R$ is indecomposable.
 - Given an example when $I \in Mod R$ is decomposable.
 - d. Given an exact sequence $L \to M \to N$ and a multiplicative set $0 \notin S \subset R$ prove: the sequence $S^{-1}L \to S^{-1}M \to S^{-1}M$ is exact. One says: "the functor $R \rightsquigarrow S^{-1}R$ is exact". S⁻¹ $L \to S^{-1}M \to S^{-1}M$ is exact. One says: "the functor $R \to S^{-1}R$ is exact". e. Deduce: $S^{-1} \cdot M/_L = S^{-1}M/_{S^{-1}L}$ and $S^{-1}(L_1 \cap L_2) = S^{-1}L_1 \cap S^{-1}L_2$. f. Suppose $x \in R$ is not a zero divisor, and the image of $y \in R$ in $R/_{(x)}$ is not a zero divisor. Verify:

 - the sequence $0 \to R \xrightarrow{[-y,x]} R^2 \xrightarrow{[y,x]^t} R \to R/(x,y) \to 0$ is exact. (This sequence is called "the Koszul complex for the pair x, y".)
 - g. Can you guess the Koszul complex for the triple x, y, z? (One assumes: $[y] \in R/(x)$ and $[z] \in R/(x, y)$ are not zero divisors.)
 - h. Question 2.15 on page 48 of M.Reid's "Commutative Algebra".
- 2. a. Let R be Noetherian and $\phi : R \to R$ a surjective homomorphism of rings. Prove: R is an (Hint: consider $ker(\phi) \subseteq ker(\phi^2) \subseteq \cdots$) isomorphism.
 - b. A topological space X is called Noetherian if any decreasing sequence of a closed sets, $X_1 \supseteq X_2 \supseteq$ \cdots , stabilizes. Prove: a ring R is Noetherian iff Spec(R) is Noetherian.
 - c. Suppose $\mathbb{k} \subsetneq \overline{\mathbb{k}}$. Disprove: given $g, f_1 \dots f_r \in \mathbb{k}[\underline{x}]$, if $g(x_o) = 0$ whenever $f_1(x_o) = 0 = \dots = f_r(x_o)$, then $q^d \in (f_1 \dots f_r)$ for $d \gg 1$.
 - d. Give examples of finitely-generated but not finitely-presented modules over the rings $k[x_1, x_2, \ldots]$, $C^{\infty}(\mathbb{R}^1), C^{\omega}(\mathbb{R}^1).$
 - e. Prove: if $A \sim B$ (the left-right equivalence, see q.3 of hwk.4) then $coker(A) \cong coker(B)$.

3. (Below we assume k = k)

- a. Describe the irreducible components of $V(J) \subset \mathbb{k}^3$ in the following cases: i. $J = (y^2 - x^4, x^2 - 2x^3 - x^2y + 2xy + y^2 - y)$ ii. $J = (xy + yz + xz, xy^2z)$ iii. $J = ((x-z)(x-y)(x-2z), x^2 - y^2 z^3).$ In the cases i. and ii. find an element $f \in I(V(J)) \setminus J$.
- b. Given two varieties $V(I) \subset \mathbb{k}^n$ and $V(J) \subset \mathbb{k}^m$, prove that $V(I) \times V(J) \subset \mathbb{k}^n \times \mathbb{k}^m$ is a variety. What is its defining ideal?
- c. We have stated in the class: a (closed) subvariety $X \subset \Bbbk[\underline{x}]$ is irreducible iff $I(X) \subset \Bbbk[\underline{x}]$ is prime. Prove the part \Leftarrow .
- d. For any ideal $I \subset \mathbb{k}[\underline{x}]$ prove: $\sqrt{I} = \bigcap_{\mathfrak{m} \supset I} \mathfrak{m}$. (Recall: $\sqrt{I} = \bigcap_{\mathfrak{p} \supset I} \mathfrak{p}$.)
- e. Deduce the weak Nullstellensatz for the rings k[x]/I, $S^{-1}k[x]$ from that for k[x]. (We did the case $S^{-1} \Bbbk[\underline{x}]$ in the class.)

