Introduction to Commutative Algebra
 201.1.7071, Fall 2022, (D.Kerner)
 Homework 9

Submission date: 15.01.2023
Questions to submit: 1.a. 1.b.ii. 1.b.iii. 1.d. 2.a. 2.c. 2.d. 3.a. 3.d. (by e-mail)

1. a. Take a short exact sequence $0 \rightarrow L \xrightarrow{\phi} M \xrightarrow{\psi} N \rightarrow 0$ and submodules $M_{1}, M_{2} \subset M$.
(Dis)Prove: if $\psi\left(M_{1}\right)=\psi\left(M_{2}\right)$ and $\phi^{-1}\left(M_{1}\right)=\phi^{-1}\left(M_{2}\right)$ then $M_{1}=M_{2}$.
b. (Dis)Prove: i. $S^{-1}\left(\cap_{j \in J} M_{j}\right)=\cap_{j \in J} S^{-1} M_{j}$ (for J finite)
ii. $S^{-1}\left(\sum_{j \in J} M_{j}\right)=\sum_{j \in J} S^{-1} M_{j}($ for any $J) \quad$ iii. $S^{-1}\left(\prod_{j \in J} M_{j}\right)=\prod_{j \in J} S^{-1} M_{j}($ for any $J)$
c. Take an ideal $I \subset R$. Prove: if R is a domain, then the module $I \in \operatorname{Mod}-R$ is indecomposable. Given an example when $I \in \operatorname{Mod}-R$ is decomposable.
d. Given an exact sequence $L \rightarrow M \rightarrow N$ and a multiplicative set $0 \notin S \subset R$ prove: the sequence $S^{-1} L \rightarrow S^{-1} M \rightarrow S^{-1} M$ is exact.

One says: "the functor $R \rightsquigarrow S^{-1} R$ is exact".
e. Deduce: $S^{-1} \cdot M / L=S^{-1} M / S^{-1} L$ and $S^{-1}\left(L_{1} \cap L_{2}\right)=S^{-1} L_{1} \cap S^{-1} L_{2}$.
f. Suppose $x \in R$ is not a zero divisor, and the image of $y \in R$ in $R /(x)$ is not a zero divisor. Verify: the sequence $0 \rightarrow R \xrightarrow{[-y, x]} R^{2} \xrightarrow{[y, x]^{t}} R \rightarrow R /(x, y) \rightarrow 0$ is exact. (This sequence is called "the Koszul complex for the pair $x, y "$.)
g. Can you guess the Koszul complex for the triple x, y, z ? (One assumes: $[y] \in R /(x)$ and $[z] \in R /(x, y)$ are not zero divisors.)
h. Question 2.15 on page 48 of M.Reid's "Commutative Algebra".
2. a. Let R be Noetherian and $\phi: R \rightarrow R$ a surjective homomorphism of rings. Prove: R is an isomorphism.
(Hint: consider $\operatorname{ker}(\phi) \subseteq k e r\left(\phi^{2}\right) \subseteq \cdots$)
b. A topological space X is called Noetherian if any decreasing sequence of a closed sets, $X_{1} \supseteq X_{2} \supseteq$ \cdots, stabilizes. Prove: a ring R is Noetherian iff $\operatorname{Spec}(R)$ is Noetherian.
c. Suppose $\mathbb{k} \subsetneq \overline{\mathbb{k}}$. Disprove: given $g, f_{1} . . f_{r} \in \mathbb{k}[\underline{x}]$, if $g\left(x_{o}\right)=0$ whenever $f_{1}\left(x_{o}\right)=0=\cdots=f_{r}\left(x_{o}\right)$, then $g^{d} \in\left(f_{1} \ldots f_{r}\right)$ for $d \gg 1$.
d. Give examples of finitely-generated but not finitely-presented modules over the rings $\mathbb{k}\left[x_{1}, x_{2}, \ldots\right]$, $C^{\infty}\left(\mathbb{R}^{1}\right), C^{\omega}\left(\mathbb{R}^{1}\right)$.
e. Prove: if $A \sim B$ (the left-right equivalence, see q. 3 of hwk.4) then $\operatorname{coker}(A) \cong \operatorname{coker}(B)$.
3. (Below we assume $\mathbb{k}=\overline{\mathbb{k}}$)
a. Describe the irreducible components of $V(J) \subset \mathbb{k}^{3}$ in the following cases:
i. $J=\left(y^{2}-x^{4}, x^{2}-2 x^{3}-x^{2} y+2 x y+y^{2}-y\right)$
ii. $J=\left(x y+y z+x z, x y^{2} z\right)$
iii. $J=\left((x-z)(x-y)(x-2 z), x^{2}-y^{2} z^{3}\right)$.

In the cases i. and ii. find an element $f \in I(V(J)) \backslash J$.
b. Given two varieties $V(I) \subset \mathbb{k}^{n}$ and $V(J) \subset \mathbb{k}^{m}$, prove that $V(I) \times V(J) \subset \mathbb{k}^{n} \times \mathbb{k}^{m}$ is a variety. What is its defining ideal?
c. We have stated in the class: a (closed) subvariety $X \subset \mathbb{k}[\underline{x}]$ is irreducible iff $I(X) \subset \mathbb{k}[\underline{x}]$ is prime. Prove the part \Leftarrow.
d. For any ideal $I \subset \mathbb{k}[\underline{x}]$ prove: $\sqrt{I}=\cap_{\mathfrak{m} \supseteq I} \mathfrak{m}$. (Recall: $\sqrt{I}=\cap_{\mathfrak{p} \supseteq I} \mathfrak{p}$.)
e. Deduce the weak Nullstellensatz for the rings $\mathbb{k}[\underline{x}]_{I}, S^{-1} \mathbb{k}[\underline{x}]$ from that for $\mathbb{k}[\underline{x}]$.
(We did the case $S^{-1} \mathbb{k}[x]$ in the class.)

