
Ordinary differential equations
(201.1.0061. Spring 2023. Dmitry Kerner)
Homework 0. Not for submission

Notations/conventions:

• The unit vector in j’th direction x̂j∈Rn. A point in the standard coordinates is x=(x1,. . .,xn)∈Rn.
• An open subset U ⊆ Rn. The standard sphere Sn−1 := {x

∣∣ ||x|| = 1} ⊂ Rn.

• The partial derivative ∂jf . The (total) k’th order derivative at a point f (k)|x0 . Thus f (1)|xo is a

vector, f (2)|xo is a (symmetric) matrix, and so on.
• Denote by Ck(U) the ring of functions with continuous k’th derivative. (Here 0 ≤ k ≤ ∞)
• Denote by Cω(U) the ring of functions analytic on U . Namely, for each xo ∈ U the function equals
(locally near xo) to its Taylor series at xo.

• For [a, b] ⊂ R1 denote by Ck[a, b] ⊂ Ck(a, b) the ring of functions with finite limits lim
x→a+

f (k)|x,

lim
x→b−

f (k)|x. The max-norm on C0[a, b] is defined by ∥f∥ = max[a,b]|f(x)|.
• A function Rn ⊇ X

f→ R is called Lipschitz (or uniformly Lipschitz) if |f(x)− f(x̃)| ≤ C · ∥x− x̃∥ for
a (fixed) constant C ∈ R>0 and any points x, x̃ ∈ X.

The function is called locally Lipschitz at xo ∈ X if f is Lipschitz on some neighborhood x ∈ U ⊂ X.
And “locally Lipschitz on X” means “locally Lipschitz at each point of X”.

1. a. Fix a function g ∈ C0[a, b]. For which sub-spaces of C0(a, b) does the map f →
∫ b
a g(x) · f(x) · dx

define an R-linear functional?
b. Take a continuous vector valued function on a compact set Rn ⊃ X

f→ Rm.
Prove: ||

∫
X f(x)dnx|| ≤

∫
X ||f(x)||dnx.

c. Prove: all the norms on Rn are equivalent. (You have seen this proof in the previous courses. Recall
that it is enough to consider the restriction onto Sn−1.)

2. a. Expand arctan x+y
1+x2 to the Taylor power series at the point (0, 0) up to the order 5.

b. Take some real numbers 0 < a1 < · · · < ak, 0 < b1 < · · · < bl and c1 < · · · < cr.
Prove: the functions {sin(ai · x)}i, {cos(bi · x)}i, {exp(ci · x)}i are R-linearly independent.
(Can you prove this in several different ways?)

c. Define the function R>0
f→ R by f(x) = x · sin 1

x + sin(x2)
x2 + x·ln(x)

1+x . Is it uniformly continuous?

3. A function Rn ⊇ U f→ R1 is called homogeneous of order d ∈ R if it satisfies f(t ·x) = td · f(x),∀ t ∈ R≥0.

a. Given a (not necessarily continuous) function on the standard sphere, Sn−1 g→ R1, define f(x) :=
∥x∥d · g( x

∥x∥) for x ̸= o, and f(o) = 0. Prove: f is homogeneous of order d.

Give a condition (on g and d) to ensure: i. f is a polynomial. ii. f ∈ Ck(Rn).
b. Suppose f ∈ C1(Rn) is homogeneous of order d. Prove:

∑
xi∂if = d · f .

c. Let f be homogeneous of order 0. Prove: f is a function of (n− 1) variables locally at each point of
Rn \ {o}.

4. a. Fix a continuous function Rn ⊇ X
f→ R. (Dis)Prove:

i. If f is locally Lipschitz on X then it is Lipschitz on every compact subset of X.
ii. If f is locally Lipschitz on X then it is uniformly continuous.
iii. If f is uniformly continuous on X then it is locally Lipschitz on X.
iv. If f is C∞ on X then f is Lipschitz on X.
v. If f(x) = o(∥x∥1001), then f is locally Lipschitz near o.

b. Suppose f ∈ C1(U) for a convex set U ⊆ Rn. Prove: f is Lipschitz on U iff f ′ is bounded.

c. Define U ⊂ R2 by 1 < r < 2, ϕ ∈ (0, 2π), in polar coordinates. Define the function U f→ (0, 2π) by
f(r, ϕ) = ϕ. Prove: f ∈ C1(U), with bounded derivative, but f is not Lipschitz on U .

d. The standard confusion is to define: “A function Rn ⊇ X
f→ R is called Lipschitz near x0 ∈ X if

|f(x)− f(x0)| ≤ C · ||x− x0||, for a constant C ∈ R>0 and any x ∈ X close to x0.”
In which sense this is wrong?

5. a. For which constants 0 < α, β does the series
∑

n
1

nα·lnβ(n)
converge?
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b. Prove: C0[a, b] is a complete vector space (for the max-norm).
c. Let {fn}n ⊂ C0[a, b] be a Cauchy sequence of functions (for the max-norm on C0[a, b]).

Prove: if xn is a Cauchy sequence on [a, b] then the sequence fn(xn) converges. Moreover, ∃ limm,n→∞fn(xm).
d. Take a sequence of continuous functions {fn}n ⊂ C0(X). Prove: if the series

∑
fn converges uniformly

on X then the limit is a continuous function.
(Do not just cite the well-known theorem, write the actual proof.)

e. Let {[a, b] fn→ R} be a sequence of monotonic functions. Suppose {fn} converges pointwise to a
continuous function. Prove: the convergence is uniform. Is the monotonicity necessary here?

f. Given a Rieman-integrable function [a, b]
f0→ R, define the sequence of functions by fk+1(x) :=∫ x

a fk(t)dt. Prove: {fk} converges uniformly (and find the limit).

Do the same question for the sequence fk+1(x) := C +
∫ x
a fk(t)dt, for a constant C ∈ R.

6. a. LetA ∈ Matn×n(R) and suppose v1, . . . , vk are eigenvectors with pairwise distinct eigenvalues λ1, . . . , λk.
Prove: v1, . . . , vk are linearly independent.

b. Prove: det[1I + t ·A] = 1 + t · trace(A) +O(t2).
c. Let A = {aij(t)} ∈ Matn×n, here aij(t) are differentiable functions of one variable. Prove:

det[A]′ = det

−− a1•(t)
′ −−

−− a2•(t)−−
. . .

+ det


−− a1•(t)−−
−− a2•(t)

′ −−
−− a3•(t)−−

. . .

+ · · ·+ det

−− a1•(t)−−
. . .

−− an•(t)
′ −−



7. Define the map Matn×n(R)
ϕ→ Rn2

by ϕ(A) = {aij} (the long vector of all the matrix entries). Define

the norm on Matn×n(R) by ∥A∥ =
√

trace(A ·At). (This is not the operator norm.) Prove: this norm is

induced from the standard norm on Rn2
, i.e. ∥A∥ = ∥ϕ(A)∥. Conclude: ϕ is an isomorphism of normed

vector spaces. Thus we can speak of Ck-functions Matn×n(R) → R, for 0 ≤ k ≤ ∞, ω.
a. Prove: the following functions are Cω.

i. Matn×n(R)
trace,det→ R. ii. The coefficients {cj(A)} of the characteristic polynomial of A.

b. Prove: the matrix product, Matn×n(R)×Matn×n(R) → Matn×n(R), (A,B) → A·B, is a Cω-function.
Prove: the inverse of a matrix, GL(n,R) → GL(n,R), A → A−1, is a Cω-function.

c. Let Σdiag ⊂ Matn×n(R) be the subset of all the matrices that are diagonalizable over C. (i.e. U ·A·U−1

is diagonal for some U ∈ GL(n,C)) Prove: any matrix whose eigenvalues are pairwise distinct complex
numbers belongs to the interior int(Σdiag). (You can use the fact: if all the complex roots of a
polynomial are distinct then they are C∞-functions of the coefficients of the polynomial.)

d. Is Matn×n(R) \ Σdiag a closed subset of Matn×n(R)? (Hint: look at Mat2×2(R))

8. a. Define the map Matn×n(R)
exp→ Matn×n(R) by exp(A) =

∞∑
j=0

Aj

j! . (Convention: A
0 = 1I)

• Compute exp(A) for a diagonal matrix. (In particular verify that the series converges)

• Compute exp(A) for A =

[
0 1
1 0

]
and for A =

1 1 0
0 1 1
0 0 1

.
b. Prove: the power series of exp(A) converges absolutely, and the convergence is uniform on compact

subsets of Matn×n(R). You can use ||A ·B|| ≤ ||A|| · ||B|| (follows from Cauchy-Schwarz inequality).
c. Consider A as a complex matrix and take its Jordan form, A = U−1(DA+CA)U , where U ∈ GL(n,C),

DA is diagonal and CA is strictly upper-triangular (corresponding to the Jordan cell structure). Verify:
Cn
A = O and DA · CA = CA ·DA.

Prove: exp(A) = U−1 · exp(DA) · (
∑n

k=0
Ck

A
k! ) · U . (You will have to open the brackets/to change the

order of summation in the series. Justify these steps.)
d. Prove: if A,B commute then exp(A+B) = exp(A)exp(B).

e. Fix some A∈Matn×n(R) and define the “path” R1 γ→Matn×n(R), by γ(t)=exp(t ·A). Compute dγ
dt .

f. Can you define the function ln(1I +A) and establish its (corresponding) properties?


