Ordinary differential equations for Math

(201.1.0061. Spring 2023. Dmitry Kerner)

Homework 10. Submission date: 12.06.2023

Questions to submit: 1.c. 2.a. 2.b. 2.e. 3.b. 3.c. 4.b. 4.c.

Either typed or in readable handwriting and scanned in readable resolution.

- **1.** Let $\mathbb{X}(t)$ be a fundamental matrix of solutions of the ODE $\underline{x}' = A(t)\underline{x}$. Prove:
 - **a.** Any two fundamental matrices are related by $\tilde{\mathbb{X}}(t) = \mathbb{X}(t) \cdot U$ for $U \in GL(n, \mathbb{R})$ (a constant matrix).
 - **b.** $\mathbb{X}(t)$ is non-degenerate for each t and satisfies: $\mathbb{X}'(t) = A(t) \cdot \mathbb{X}(t)$.
 - **c.** Given the initial condition $\underline{x}(t_0) = \underline{x}_0$, the solution is: $\mathbb{X}(t) \cdot \mathbb{X}^{-1}(t_0) \cdot \underline{x}_0$.
- **2. a.** Given two functions $x_1(t), x_2(t) \in C^1(a, b)$ (not necessarily solutions of some ODE), suppose $W(x_1(t), x_2(t)) = 0$ on (a, b). Does this imply the \mathbb{R} -linear dependence of $x_1(t)$, $x_2(t)$? (Hint at the end of page)
 - **b.** Prove: if $W(x_1(t), \ldots, x_n(t)) = 0$ on (a, b) for some analytic functions, then these functions are \mathbb{R} -linearly dependent on (a, b).
 - **c.** Suppose a solution x(t) of equation $x^{(n)} + a_{n-1}(t)x^{(n-1)}\cdots + a_0(t)x = 0$, with $a_j \in C^0$ has infinitely many zeros on a compact interval. Prove: x(t) = 0 on this interval. Can the compactness be weakened to boundedness here?
 - **d.** Prove: the function $sin(t^p)$, $p \in \mathbb{N}$, cannot be a solution of equation $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots + a_0(t)x = 0$ with C^0 -coefficients, for n < p.
 - **e.** Prove: the function $e^{-\frac{1}{t^2}}$, extended to (-1, 1), cannot be a solution of equation $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots + a_0(t)x = 0$ with C^0 -coefficients, for any n.
- **3. a.** Let $\mathbb{X}(t) := [\underline{x}_1(t), \dots, \underline{x}_n(t)] \in Mat_{n \times n}(C^1(a, b))$, here the columns are some solutions of $\underline{x}' = A(t) \cdot \underline{x}$. Prove: $det[\mathbb{X}(t)] \neq 0$ iff $\mathbb{X}(t)$ is non-degenerate for all $t \in (a, b)$.
 - **b.** Find a system $\underline{x}' = A(t) \cdot \underline{x}$ whose solutions are $\underline{x}_1(t) = [e^t \cos(t), e^t \sin(t)]$ and $\underline{x}_2(t) = [-\sin(t), \cos(t)]$.
 - c. Prove: if $\lim_{t\to\infty} \int^t trace[A(s)]ds = \infty$, then at least one solution of $\underline{x}' = A(t)\underline{x}$ is unbounded.

Show by an example that the conclusion " $||\underline{x}(t)|| \to \infty$ for at least one solutions" fails.

- **d.** Prove: the rescaling $\underline{x} \to e^{-\int^t \frac{trace[A(s)]}{n} ds} \underline{x}$ transforms $\underline{x}' = A(t) \cdot \underline{x}$ into the system $\underline{x}' = \tilde{A}(t) \cdot \underline{x}$ with $trace[\tilde{A}(t)] = 0$.
- **4. a.** Prove: there exists a fundamental matrix $\mathbb{X}(t)$ of the equation $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots = 0$ satisfying $\mathbb{X}(t_0) = \mathbb{I}$.
 - **b.** Verify: the functions $sin(t^2)$, $cos(t^2)$ are (linearly independent) solutions of $tx'' x' + 4t^3x = 0$, but the Wronskian of these functions vanishes at a point. Any contradiction to **3.a**?
 - c. Write the general solution of tx'' + 2x' tx = 0. (Hint: one solution is $x(t) = \frac{e^t}{t}$.)
 - **d.** Find a linear ODE whose space of solutions is spanned by $sin\frac{1}{t}$, $cos\frac{1}{t}$.
 - **e.** Prove: the rescaling $x \to e^{-\int t \frac{a_{n-1}(s)}{n} ds} x$ transforms the equation $x^{(n)} + a_{n-1}(t) x^{(n-1)} + \cdots + a_0(t) x = 0$ into an equation with $\tilde{a}_{n-1}(t) = 0$.

 $|x| \cdot x$, x^2 :trift