Ordinary differential equations for Math

(201.1.0061. Spring 2023. Dmitry Kerner)

Homework 10. Submission date: 12.06.2023
Questions to submit: 1.c. 2.a. 2.b. 2.e. 3.b. 3.c. 4.b. 4.c.
Either typed or in readable handwriting and scanned in readable resolution.

1. Let $\mathbb{X}(t)$ be a fundamental matrix of solutions of the ODE $\underline{x}^{\prime}=A(t) \underline{x}$. Prove:
a. Any two fundamental matrices are related by $\tilde{\mathbb{X}}(t)=\mathbb{X}(t) \cdot U$ for $U \in G L(n, \mathbb{R})$ (a constant matrix).
b. $\mathbb{X}(t)$ is non-degenerate for each t and satisfies: $\mathbb{X}^{\prime}(t)=A(t) \cdot \mathbb{X}(t)$.
c. Given the initial condition $\underline{x}\left(t_{0}\right)=\underline{x}_{0}$, the solution is: $\mathbb{X}(t) \cdot \mathbb{X}^{-1}\left(t_{0}\right) \cdot \underline{x}_{0}$.
2. a. Given two functions $x_{1}(t), x_{2}(t) \in C^{1}(a, b)$ (not necessarily solutions of some ODE), suppose $W\left(x_{1}(t), x_{2}(t)\right)=0$ on (a, b). Does this imply the \mathbb{R}-linear dependence of $x_{1}(t)$, $x_{2}(t)$? (Hint at the end of page)
b. Prove: if $W\left(x_{1}(t), \ldots, x_{n}(t)\right)=0$ on (a, b) for some analytic functions, then these functions are \mathbb{R}-linearly dependent on (a, b).
c. Suppose a solution $x(t)$ of equation $x^{(n)}+a_{n-1}(t) x^{(n-1)} \cdots+a_{0}(t) x=0$, with $a_{j} \in C^{0}$ has infinitely many zeros on a compact interval. Prove: $x(t)=0$ on this interval. Can the compactness be weakened to boundedness here?
d. Prove: the function $\sin \left(t^{p}\right), p \in \mathbb{N}$, cannot be a solution of equation $x^{(n)}+a_{n-1}(t) x^{(n-1)}+$ $\cdots+a_{0}(t) x=0$ with C^{0}-coefficients, for $n<p$.
e. Prove: the function $e^{-\frac{1}{t^{2}}}$, extended to $(-1,1)$, cannot be a solution of equation $x^{(n)}+$ $a_{n-1}(t) x^{(n-1)}+\cdots+a_{0}(t) x=0$ with C^{0}-coefficients, for any n.
3. a. Let $\mathbb{X}(t):=\left[\underline{x}_{1}(t), \ldots, \underline{x}_{n}(t)\right] \in \operatorname{Mat}_{n \times n}\left(C^{1}(a, b)\right)$, here the columns are some solutions of $\underline{x}^{\prime}=A(t) \cdot \underline{x}$. Prove: $\operatorname{det}[\mathbb{X}(t)] \not \equiv 0$ iff $\mathbb{X}(t)$ is non-degenerate for all $t \in(a, b)$.
b. Find a system $\underline{x}^{\prime}=A(t) \cdot \underline{x}$ whose solutions are $\underline{x}_{1}(t)=\left[e^{t} \cos (t), e^{t} \sin (t)\right]$ and $\underline{x}_{2}(t)=$ $[-\sin (t), \cos (t)]$.
c. Prove: if $\lim _{t \rightarrow \infty} \int^{t} \operatorname{trace}[A(s)] d s=\infty$, then at least one solution of $\underline{x}^{\prime}=A(t) \underline{x}$ is unbounded.
Show by an example that the conclusion " $\|\underline{x}(t)\| \rightarrow \infty$ for at least one solutions" fails.
d. Prove: the rescaling $\underline{x} \rightarrow e^{-\int^{t} \frac{\operatorname{trace}[A(s)]}{n} d s} \underline{x}$ transforms $\underline{x}^{\prime}=A(t) \cdot \underline{x}$ into the system $\underline{x}^{\prime}=$ $\tilde{A}(t) \cdot \underline{x}$ with $\operatorname{trace}[\tilde{A}(t)]=0$.
4. a. Prove: there exists a fundamental matrix $\mathbb{X}(t)$ of the equation $x^{(n)}+a_{n-1}(t) x^{(n-1)}+\cdots=0$ satisfying $\mathbb{X}\left(t_{0}\right)=\mathbb{I}$.
b. Verify: the functions $\sin \left(t^{2}\right), \cos \left(t^{2}\right)$ are (linearly independent) solutions of $t x^{\prime \prime}-x^{\prime}+$ $4 t^{3} x=0$, but the Wronskian of these functions vanishes at a point. Any contradiction to $3 . a$?
c. Write the general solution of $t x^{\prime \prime}+2 x^{\prime}-t x=0$. (Hint: one solution is $x(t)=\frac{e^{t}}{t}$.)
d. Find a linear ODE whose space of solutions is spanned by $\sin \frac{1}{t}, \cos \frac{1}{t}$.
e. Prove: the rescaling $x \rightarrow e^{-\int^{t} \frac{a_{n-1}(s)}{n} d s} x$ transforms the equation $x^{(n)}+a_{n-1}(t) x^{(n-1)}+$ $\cdots+a_{0}(t) x=0$ into an equation with $\tilde{a}_{n-1}(t)=0$.
