Ordinary differential equations for Math
 (201.1.0061. Spring 2023. Dmitry Kerner)
 Homework 11. Submission date: 17.06.2023

Questions to submit: 1.b. 1.c. 2.a. 2.c. 2.d. 3.a. 4.b. 4.d. Either typed or in readable handwriting and scanned in readable resolution.

1. a. Suppose $A(t)=\left[\begin{array}{cc}\sin (t) & \arctan (\cos (2 t)) \\ \cos (\sin (2 t)) & \frac{1}{10}-\cos (t)\end{array}\right]$. Prove: the system $\underline{x}^{\prime}=A(t) \cdot \underline{x}$ has at least one unbounded solution.
b. For any solution of $\underline{x}^{\prime}=A(t) \underline{x}$ prove the Grönwall bound: $\|\underline{x}(t)\| \leq\left\|x\left(t_{0}\right)\right\| \cdot e^{\int_{t_{0}}^{t}\|A(s)\|{ }_{o p} d s}$.
c. Obtain a similar bound for any solution of $\underline{x}^{\prime}=A(t) \underline{x}+\underline{b}(t)$.
2. Consider the equation $D_{n}(x)=g(t)$, where $D_{n}=\frac{d^{n}}{d t^{n}}+a_{n-1} \frac{d^{n-1}}{d t^{n-1}}+\cdots+a_{0}$, with $a_{i} \in \mathbb{R}$.
a. Write the general solution of $x^{(4)}+4 x=\sum b_{j} e^{\omega_{j} t}$, here $\omega_{j} \in \mathbb{C}$, with $\omega_{j}=0$ or $\omega_{j}^{3}=-4$.
b. Suppose $\mu \in \mathbb{C}$ is not a root of the characteristic polynomial of D_{n}. Prove: the equation $D_{n}(x)=t^{k} \cdot e^{\mu t}$, with $k \in \mathbb{N}$, has a solution of the form $g_{k}(t) \cdot e^{\mu t}$ for a polynomial $g_{k}(t) \in \mathbb{C}[t]_{\leq k}$ of degree k. (Hint. It is enough to show: the operator $D_{n} \circlearrowright \mathbb{C}[t]_{\leq k} \cdot e^{\mu t}$ acts surjectively. And for this it is enough to verify: D_{n} acts injectively.)
c. Suppose $\mu \in \mathbb{C}$ is a root of the characteristic polynomial of D_{n}, of multiplicity p. Prove: the equation $D_{n}(x)=t^{k} \cdot e^{\mu t}$ has a solution of the form $t^{p} \cdot g(t) \cdot e^{\mu t}$ for a polynomial $g_{k}(t) \in \mathbb{C}[t]_{\leq k}$ of degree k. Wiki: "Resonance".
d. Write the general solution of $x^{(4)}+4 x=b \cdot t \cdot e^{\mu t}$. (Here $b, \mu \neq 0$ are parameters.)
e. Consider the equation $D_{n} x=p(t) \cdot e^{\mu t}$, here $p(t) \in \mathbb{C}[t]$. What is the necessary and sufficient condition to ensure that the equation has a periodic solution? A bounded solution?
3. a. Suppose $e^{t}, \sin (t), t^{17}$ are solutions of a linear non-homogeneous equation of 2 'nd order. Write the general solution. Find the solution satisfying: $x(0)=a, x^{\prime}(0)=b$.
b. Suppose the functions $x_{1}(t) \ldots x_{n}(t)$ are \mathbb{R}-linearly independent. Take the differential equation $D_{n} x=0$ whose space of solutions is $\operatorname{Span}_{\mathbb{R}}\left(x_{1}(t), \ldots, x_{n}(t)\right)$. Prove: if all $\left\{x_{i}(t)\right\}$ are T-periodic then so are the coefficients of the operator D_{n}.
4. a. Suppose $x(t)$ is a solution of $x^{(n)}+a_{n-1}(t) x^{(n-1)}+\cdots+a_{0}(t) x=0$. We have seen how one can use $x(t)$ to pass to an equation $y^{(n-1)}+\tilde{a}_{n-2}(t) y^{(n-2)}+\cdots+\tilde{a}_{0}(t) y=$ 0 . Prove: $x(t)$ together with the solutions of this last equations provide the complete system of solutions of the initial equations. In particular, given the independent solutions $y_{1}(t), \ldots, y_{n-1}(t)$ verify: the functions $x(t), x(t) \cdot \int^{t} y_{1}(s) d s, \ldots, x(t) \cdot \int^{t} y_{n-1}(s) d s$ are \mathbb{R} linearly independent.
b. Find the general solution of $t x^{\prime \prime}-(t+n) x^{\prime}+n x=0$, for $n \in \mathbb{N}$, given a solution e^{t}.
c. Find the general solution of $\left(t^{2}-1\right) x^{\prime \prime}+4 t x^{\prime}+2 x=6 t$, given the particular solutions $x_{1}(t)=t, x_{2}(t)=\frac{t^{2}+t+1}{t+1}$.
d. Find the general solution of Bessel's equation $t^{2} x^{\prime \prime}+t x^{\prime}+\left(t^{2}-\frac{1}{4}\right) x=3 t^{\frac{3}{2}} \sin (t), t>0$, given a particular solution of the corresponding homogeneneous equation, $x(t)=\frac{\sin (t)}{\sqrt{t}}$.
