Ordinary differential equations for Math

(201.1.0061. Spring 2023. Dmitry Kerner)

Homework 12. Submission date: 25.06.2023
Questions to submit: 1.c. 1.d. 1.e. 2.c. 2.d. 2.e. 3.b. Either typed or in readable handwriting and scanned in readable resolution.

1. a. Compute the monodromy matrix, $e^{R T}$, for the system $\underline{x}^{\prime}=A \cdot \underline{x}$, with constant A.
b. Recall, the fundamental matrix $\mathbb{X}(t)$ of the (periodic) system $\underline{x}^{\prime}=A(t) \cdot \underline{x}$ is non-unique. Prove: the monodromy matrix is well defined up to conjugation and does not depend on the choice of t_{o}.
c. Suppose the coefficients of $x^{(n)}+a_{n-1}(t) x^{(n-1)}+\cdots=0$ are periodic. Prove: for any basis of solutions $\underline{x}(t):=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ one can present $\underline{x}(t)=\underline{y}(t) \cdot e^{R t}$, where \underline{y} is a row of periodic functions, while $R \in M a t_{n \times n}(\mathbb{C})$.
d. Let $x_{1}(t), x_{2}(t)$ be solutions of the equation $x^{\prime \prime}+a(t) x^{\prime}+b(t)=0$, where $a(t), b(t) \in C^{0}(\mathbb{R})$ are periodic with period T. Take the corresponding fundamental matrix $\mathbb{X}(t)$, we assume $\mathbb{X}(0)=\mathbb{I}$. Let $e^{R T}$ be the corresponding monodromy matrix. Prove: its eigenvalues are the roots of polynomial $z^{2}-\left(x_{1}(T)+x_{2}^{\prime}(T)\right) z+e^{-\int_{0}^{T} a(t) d t}=0$.
2. Suppose $0 \not \equiv x(t) \in C^{2}\left[t_{1}, t_{2}\right]$ is a solution of the ODE $x^{\prime \prime}+a(t) x=0$.
a. Suppose $a(t) \leq 0$ on $\left[t_{1}, t_{2}\right]$. Prove: $x(t)$ can have at most one zero on $\left(t_{1}, t_{2}\right)$.
b. Suppose $a(t) \leq k^{2}$ on $\left[t_{1}, t_{1}+\frac{\pi}{k}\right]$. Prove: $x(t)$ can have at most one zero on $\left(t_{1}, t_{1}+\frac{\pi}{k}\right)$.
c. (Sturm separation theorem) Let $x_{1}(t), x_{2}(t)$ be linearly independent solutions of the equation $x^{\prime \prime}+a_{1}(t) x^{\prime}+a_{0} x=0$. Prove: between any two consecutive zeros of $x_{1}(t)$ lies exactly one zero of $x_{2}(t)$.
d. Prove: if $0<m \leq a(t) \leq M$ on $\left(t_{0}, \infty\right)$, then the distance between any two consecutive zeros of $x(t)$ is $\frac{\pi}{\sqrt{M}} \leq$ dist $\leq \frac{\pi}{\sqrt{m}}$.
e. (Kneser's theorem) If $a(t)>\frac{1+\epsilon}{4 t^{2}}$ for some $\epsilon>0$, then $x(t)$ has infinite number of zeros. If $a(t)<\frac{1}{4 t^{2}}$ then $x(t)$ has a finite number of zeros.
(Hint: compare to the Euler equation $x^{\prime \prime}+\frac{1}{4 t^{2}} x=0$.)
3. The Bessel function $J_{n}(t)$ is defined as the solution of the equation $x^{\prime \prime}+\left(1+\frac{1 / 4-n^{2}}{t^{2}}\right) x=0$.
a. Read Wiki-page about the applications of Bessel functions.
b. Prove: $J_{n}(t)$ has infinite number of zeros, say $\left\{t_{k}\right\}$, and $\lim _{k \rightarrow \infty}\left|t_{k+1}-t_{k}\right|=\pi$.
c. When does one have $\left|t_{k+1}-t_{k}\right|>\pi$? When does one have $\left|t_{k+1}-t_{k}\right|<\pi$?
d. Prove: if $n>m$ then between every two zeros or J_{m} lies a zero of J_{n}.
