Ordinary differential equations for Math (201.1.0061. Spring 2023. Dmitry Kerner) Homework 12. Submission date: 25.06.2023

Questions to submit: 1.c. 1.d. 1.e. 2.c. 2.d. 2.e. 3.b.

Either typed or in readable handwriting and scanned in readable resolution.

- 1. a. Compute the monodromy matrix, e^{RT} , for the system $\underline{x}' = A \cdot \underline{x}$, with constant A.
 - b. Recall, the fundamental matrix $\mathbb{X}(t)$ of the (periodic) system $\underline{x}' = A(t) \cdot \underline{x}$ is non-unique. Prove: the monodromy matrix is well defined up to conjugation and does not depend on the choice of t_o .
 - c. Suppose the coefficients of $x^{(n)} + a_{n-1}(t)x^{(n-1)} + \cdots = 0$ are periodic. Prove: for any basis of solutions $\underline{x}(t) := (x_1(t), \ldots, x_n(t))$ one can present $\underline{x}(t) = y(t) \cdot e^{Rt}$, where y is a row of periodic functions, while $R \in Mat_{n \times n}(\mathbb{C})$.
 - d. Let $x_1(t), x_2(t)$ be solutions of the equation x'' + a(t)x' + b(t) = 0, where $a(t), b(t) \in C^0(\mathbb{R})$ are periodic with period T. Take the corresponding fundamental matrix $\mathbb{X}(t)$, we assume $\mathbb{X}(0) = \mathbb{I}$. Let e^{RT} be the corresponding monodromy matrix. Prove: its eigenvalues are the roots of polynomial $z^2 - (x_1(T) + x'_2(T))z + e^{-\int_0^T a(t)dt} = 0.$
- 2. Suppose $0 \neq x(t) \in C^2[t_1, t_2]$ is a solution of the ODE x'' + a(t)x = 0.
 - a. Suppose $a(t) \leq 0$ on $[t_1, t_2]$. Prove: x(t) can have at most one zero on (t_1, t_2) .
 - b. Suppose $a(t) \leq k^2$ on $[t_1, t_1 + \frac{\pi}{k}]$. Prove: x(t) can have at most one zero on $(t_1, t_1 + \frac{\pi}{k})$.
 - c. (Sturm separation theorem) Let $x_1(t), x_2(t)$ be linearly independent solutions of the equation $x'' + a_1(t)x' + a_0x = 0$. Prove: between any two consecutive zeros of $x_1(t)$ lies exactly one zero of $x_2(t)$.
 - d. Prove: if 0 < m ≤ a(t) ≤ M on (t₀, ∞), then the distance between any two consecutive zeros of x(t) is π/√M ≤ dist ≤ π/√m.
 e. (Kneser's theorem) If a(t) > 1+ε/4t² for some ε > 0, then x(t) has infinite number of zeros.
 - If $a(t) < \frac{1}{4t^2}$ then x(t) has a finite number of zeros.

(Hint: compare to the Euler equation $x'' + \frac{1}{4t^2}x = 0$.)

- 3. The Bessel function $J_n(t)$ is defined as the solution of the equation $x'' + (1 + \frac{1/4 n^2}{t^2})x = 0$. a. Read Wiki-page about the applications of Bessel functions.
 - b. Prove: $J_n(t)$ has infinite number of zeros, say $\{t_k\}$, and $\lim_{k\to\infty} |t_{k+1} t_k| = \pi$.
 - c. When does one have $|t_{k+1} t_k| > \pi$? When does one have $|t_{k+1} t_k| < \pi$?
 - d. Prove: if n > m then between every two zeros or J_m lies a zero of J_n .