Ordinary differential equations for Math

(201.1.0061. Spring 2023. Dmitry Kerner)

Homework 13. Submission date: 1.07.2023
Questions to submit: 1.a.ii. 1.c. 2.a. 2.d. 3.a. 3.d. 4.b. 4.c. Either typed or in readable handwriting and scanned in readable resolution.

1. a. Study the stability of the equilibria points for the systems:
i. $x^{\prime}=e^{x+2 y}-\cos (3 x), y^{\prime}=\sqrt{4+8 x}-2 e^{y} . \quad$ ii. $x^{\prime}=x^{2}+y^{2}-1, y^{\prime}=2 x y$.
b. Prove that the following conditions are equivalent:
i. Any solution of $\underline{x}^{\prime}=A(t) \underline{x}+\underline{b}(t)$ is stable.
ii. At least one solution of $\underline{x}^{\prime}=A(t) \underline{x}$ is stable.
iii. all the solutions of $\underline{x}^{\prime}=A(t) \underline{x}$ are bounded for $t \rightarrow \infty$.
(In particular: either all solutions are stable or all are unstable.)
c. (Dis)Prove: if all the solutions of $x^{\prime}=f(x)$ are bounded then the equilibria points are stable.
2. a. Given the system $\underline{x}^{\prime}=A(t) \underline{x}+\underline{b}(t)$, denote by $\lambda_{\max }(t)$ the largest eigenvalue of the matrix $\frac{A(t)+A^{T}(t)}{2}$ (for each time moment). Prove:
i. If $-\infty \leq \int_{t_{o}}^{\infty} \lambda_{\max }(s) d s<\infty$ then any solution is stable.
ii. If $\int_{t_{o}}^{\infty} \lambda_{\max }(s) d s=-\infty$ then any solution is exponentially-stable.
b. Consider the equation $x^{(n)}+a_{n-1}\left(x, x^{\prime}, \ldots, x^{(n-1)}\right) \cdot x^{(n-1)}+\cdots+a_{0}\left(x, x^{\prime}, \ldots, x^{(n-1)}\right) \cdot x=0$, for some continuous functions $\left\{a_{i}(.).\right\}$. Prove: if $\operatorname{Re}(\lambda)<0$ for all the roots of the polynomial $\lambda^{n}+a_{n-1}(o) \lambda^{n-1}+\cdots+a_{0}(o)$ then the zero solution is stable.
c. Consider the system $\underline{x}^{\prime}=A(t) \cdot \underline{x}$, where $A(t) \in M a t_{n \times n}\left(C^{0}(0, \infty)\right)$. Suppose any solution satisfies: $\lim _{t \rightarrow \infty}\|\underline{x}(t)\|=0$. Prove: $\int_{t_{o}}^{\infty} \operatorname{trace}[A(s)] d s=-\infty$.
d. Suppose $x=0$ is an asymptotically stable solution for the system $\underline{x}^{\prime}=A \underline{x}$, where A is \mathbb{C}-diagonalizable. Suppose $\int_{0}^{\infty}\|B(s)\|_{o p} d s<\infty$. Prove: any solution of the system $\underline{x}^{\prime}=(A+B(t)) \underline{x}$ is asymptotically stable.
3. a. Let $\mathbb{X}(t), \tilde{\mathbb{X}}(t)$ be two fundamental matrices of the system $\underline{x}^{\prime}=A(t) \underline{x}$. Suppose $\mathbb{X}\left(t_{1}\right)=\mathbb{I}$ and $\tilde{\mathbb{X}}\left(t_{2}\right)=\mathbb{I}$. Prove: $\mathbb{X}\left(t_{2}\right) \cdot \tilde{\mathbb{X}}\left(t_{1}\right)=\mathbb{I}$.
b. Let $\mathbb{X}_{A}(t)$ be a fundamental matrix for $\underline{x}^{\prime}=A(t) \cdot \underline{x}$, let $\mathbb{X}_{B}(t)$ be a fundamental matrix for $\underline{x}^{\prime}=B(t) \cdot \underline{x}$. Prove: if $\mathbb{X}_{A}(t) B(t)=B(t) \mathbb{X}_{A}(t)$ then $\mathbb{X}_{A}(t) \mathbb{X}_{B}(t)$ is a fundamental matrix of $\underline{x}^{\prime}=(A(t)+B(t)) \underline{x}$.
c. Prove: λ is an eigenvalue of the monodromy matrix $e^{R T}$ iff there exists a solution $\underline{x}(t)$ satisfying $\underline{x}(t+T)=\lambda \cdot \underline{x}(t)$.
d. Let $\underline{x}^{\prime}=A(t) \underline{x}$ where $A(t)$ is periodic with period T. Take the fundamental matrix $\mathbb{X}(t)$ satisfying: $\mathbb{X}(0)=\mathbb{I}$. Prove: $\mathbb{X}(d \cdot T)=\mathbb{X}(T)^{d}$.
4. a. Let $A(t)$ be a periodic matrix. Prove: there exists a constant matrix $C \in M a t_{n \times n}(\mathbb{C})$ such that the system $\underline{x}^{\prime}=(A(t)-C) \underline{x}$ has a basis of periodic solutions.
b. Suppose two solutions, $x(t), \tilde{x}(t)$ of $D_{n} x=0$ satisfy: $\tilde{x}^{(i)}\left(t_{o}+T\right)=x^{(i)}\left(t_{o}\right)$ for all $i=$ $0, ., n-1$. Prove: $x(t)=\tilde{x}(t+T)$.
c. Suppose the operator D_{2} has periodic coefficients. Suppose a non-trivial solution of $D_{2} x=0$ has at least two zeros. Prove: any solution has infinity of zeros.
