## Ordinary differential equations for Math (201.1.0061. Spring 2023. Dmitry Kerner) Homework 13. Submission date: 1.07.2023

Questions to submit: 1.a.ii. 1.c. 2.a. 2.d. 3.a. 3.d. 4.b. 4.c. Either typed or in readable handwriting and scanned in readable resolution.



1. a. Study the stability of the equilibria points for the systems:

i.  $x' = e^{x+2y} - \cos(3x), y' = \sqrt{4+8x} - 2e^y$ . ii.  $x' = x^2 + y^2 - 1, y' = 2xy$ .

- b. Prove that the following conditions are equivalent:
  - i. Any solution of  $\underline{x}' = A(t)\underline{x} + b(t)$  is stable.
  - ii. At least one solution of x' = A(t)x is stable.
  - iii. all the solutions of x' = A(t)x are bounded for  $t \to \infty$ .
  - (In particular: either all solutions are stable or all are unstable.)
- c. (Dis)Prove: if all the solutions of x' = f(x) are bounded then the equilibria points are stable.
- 2. a. Given the system  $\underline{x}' = A(t)\underline{x} + \underline{b}(t)$ , denote by  $\lambda_{max}(t)$  the largest eigenvalue of the matrix  $\frac{A(t)+A^{T}(t)}{2}$  (for each time moment). Prove:

  - i. If  $-\infty \leq \int_{t_o}^{\infty} \lambda_{max}(s) ds < \infty$  then any solution is stable. ii. If  $\int_{t_o}^{\infty} \lambda_{max}(s) ds = -\infty$  then any solution is exponentially-stable. b. Consider the equation  $x^{(n)} + a_{n-1}(x, x', \dots, x^{(n-1)}) \cdot x^{(n-1)} + \dots + a_0(x, x', \dots, x^{(n-1)}) \cdot x = 0$ , for some continuous functions  $\{a_i(..)\}$ . Prove: if  $Re(\lambda) < 0$  for all the roots of the polynomial  $\lambda^n + a_{n-1}(o)\lambda^{n-1} + \cdots + a_0(o)$  then the zero solution is stable.
  - c. Consider the system  $\underline{x}' = A(t) \cdot \underline{x}$ , where  $A(t) \in Mat_{n \times n}(C^0(0, \infty))$ . Suppose any solution satisfies:  $\lim_{t \to \infty} ||\underline{x}(t)|| = 0$ . Prove:  $\int_{t_o}^{\infty} trace[A(s)]ds = -\infty$ .
  - d. Suppose x = 0 is an asymptotically stable solution for the system  $\underline{x}' = A\underline{x}$ , where A is C-diagonalizable. Suppose  $\int_0^\infty \|B(s)\|_{op} ds < \infty$ . Prove: any solution of the system  $\underline{x}' = (A + B(t))\underline{x}$  is asymptotically stable.
- 3. a. Let  $\mathbb{X}(t)$ ,  $\mathbb{X}(t)$  be two fundamental matrices of the system  $\underline{x}' = A(t)\underline{x}$ . Suppose  $\mathbb{X}(t_1) = \mathbb{I}$ and  $\tilde{\mathbb{X}}(t_2) = \mathbb{I}$ . Prove:  $\mathbb{X}(t_2) \cdot \tilde{\mathbb{X}}(t_1) = \mathbb{I}$ .
  - b. Let  $\mathbb{X}_A(t)$  be a fundamental matrix for  $\underline{x}' = A(t) \cdot \underline{x}$ , let  $\mathbb{X}_B(t)$  be a fundamental matrix for  $\underline{x}' = B(t) \cdot \underline{x}$ . Prove: if  $\mathbb{X}_A(t)B(t) = B(t)\mathbb{X}_A(t)$  then  $\mathbb{X}_A(t)\mathbb{X}_B(t)$  is a fundamental matrix of  $\underline{x'} = (A(t) + B(t))\underline{x}.$
  - c. Prove:  $\lambda$  is an eigenvalue of the monodromy matrix  $e^{RT}$  iff there exists a solution x(t)satisfying  $x(t+T) = \lambda \cdot x(t)$ .
  - d. Let  $\underline{x}' = A(t)\underline{x}$  where A(t) is periodic with period T. Take the fundamental matrix  $\mathbb{X}(t)$ satisfying:  $\mathbb{X}(0) = \mathbb{I}$ . Prove:  $\mathbb{X}(d \cdot T) = \mathbb{X}(T)^d$ .
- 4. a. Let A(t) be a periodic matrix. Prove: there exists a constant matrix  $C \in Mat_{n \times n}(\mathbb{C})$  such that the system  $\underline{x}' = (A(t) - C)\underline{x}$  has a basis of periodic solutions.
  - b. Suppose two solutions,  $x(t), \tilde{x}(t)$  of  $D_n x = 0$  satisfy:  $\tilde{x}^{(i)}(t_o + T) = x^{(i)}(t_o)$  for all i =0, .., n - 1. Prove:  $x(t) = \tilde{x}(t + T)$ .
  - c. Suppose the operator  $D_2$  has periodic coefficients. Suppose a non-trivial solution of  $D_2 x = 0$ has at least two zeros. Prove: any solution has infinity of zeros.