Ordinary differential equations for Math
 (201.1.0061. Spring 2023. Dmitry Kerner)
 Homework 3. Submission date: 13.04.2023

Questions to submit: 1.b. 2.i. 2.iii. 2.v. 4.c. 5.a. 6.b. Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

1. The Bernoulli equation, $x^{\prime}=g(t) x+h(t) x^{n+1}, g, h \in C^{0}(a, b), n \neq 0,-1$, is important for fluid transition between two reservoirs. The standard approach is to convert it to a linear equation, by substition $x=z^{k}$ near a point $x_{0} \neq 0$.
a. Find the needed k. (Address both cases $x_{0}>0, x_{0}<0$.)
b. Solve the IVP: $x^{\prime}=x \cdot \tan (t)+x^{4} \cdot \cos (t), x(\pi)=-1$.
2. In the following cases write the general solution (at least in the form $F(x, t)=$ const). Draw the integral curves (you can use any software). For which initial conditions the local solution exists/is unique? What are the singular points of these curves (the points with $\operatorname{grad}(F)=\overrightarrow{0})$?
i. $x^{\prime}=\frac{2 t+3 t^{2} x}{3 x^{2}-t^{3}}$
ii. $\quad x^{\prime}=\frac{2 x}{3 t}+\frac{2 t}{x}$
iii. $3 t^{2} x+x^{2}+2 t^{3} x^{\prime}+3 t x \cdot x^{\prime}=0$
iv. $x^{\prime}=x\left(1+x e^{t}\right)$
v. $t x^{\prime}-2 t^{2} \sqrt{x}=4 x$
3. Take two linear functions $l_{i}(t, x)=a_{i} t+b_{i} x-c_{i}, i=1,2$. Consider the equation $x^{\prime}=\frac{l_{2}(t, x)}{l_{1}(t, x)}$.
a. Suppose the lines $\left\{l_{i}(t, x)=0\right\} \subset \mathbb{R}^{2}$ are not parallel. Shift the coordinates $t \rightarrow t-c_{t}$, $x \rightarrow x-c_{x}$ to move the line intersection to the origin. In the new coordinates the equation becomes homogeneous. Write the details. Solve the IVP: $x^{\prime}=\frac{4 x-2 t-6}{x+t-3}, x(2)=2$.
b. If the two lines are parallel (but do not coincide) then change the coordinates $x \rightarrow x-c \cdot t$ to get an autonomous equation. Write the details.
Write the general solution of the equation $x^{\prime}=\frac{t-x-1}{t-x-2}$.
4. For a differentiable function $\mathbb{R}^{n} \supseteq \mathcal{U} \xrightarrow{F} \mathbb{R}$ define the total differential $d F:=\sum_{j} \partial_{j} F \cdot d x_{j}$.
a. Is $x d y-y d x$ the total differential of a C^{2}-function?
b. Prove: if $\sum a_{j} \cdot d x_{j}$ is the total differential of a C^{2} function then $\partial_{j} a_{i}=\partial_{i} a_{j}$ for all i, j.
c. Prove: the differential forms $\frac{x d x+y d y}{\left(x^{2}+y^{2}\right)^{p}}, \frac{y d x-x d y}{\left(x^{2}+y^{2}\right)}$ are locally exact at each point of $\mathbb{R}^{2} \backslash\{0,0\}$. Let \mathcal{U} be one of: $\mathbb{R}^{2} \backslash\{0,0\}, \mathbb{R}_{x>0}^{1} \times \mathbb{R}_{y}^{1}, \mathbb{R}^{2} \backslash\{y=0, x \leq 0\}$. In which cases are these forms exact on \mathcal{U} ?
5. Pass from the (x, t)-coordinates to the polar coordinates (r, ϕ). Accordingly transform the equation $x^{\prime}=f\left(\frac{x}{t}\right)$ into $\frac{d r}{d \phi}=r \cdot \Phi(\phi)$. Here the function Φ is 2π-periodic and possibly not defined on some (discrete) set of points. Define $p:=\int_{0}^{2 \pi} \Phi(\phi) d \phi$, suppose this integral converges.
a. Describe the integral curves in the cases $p>0, p=0, p<0$. Prove: any local solution extends to a global one, $\mathbb{R}^{1} \xrightarrow{r(\phi)} \mathbb{R}_{\geq 0}^{1}$. Conclude: in (x, t) coordinates no local solution extends to a global $\mathbb{R}^{1} \xrightarrow{x(t)} \mathbb{R}^{1}$, and for some initial conditions (which?) there is no existence/uniqueness.
b. As an explicit example analyze the solutions of $x^{\prime}=\frac{C \cdot x-t}{x+C \cdot t}$, for all constants $C \in \mathbb{R}$.
6. Consider the equation $f \cdot d x+g \cdot d y=0$. Suppose $g\left(x_{0}, y_{0}\right) \neq 0$.
a. Prove: there exists a local integrating factor of the form $\lambda(x)$ iff $\frac{f-g}{g}$ is locally independent of y. In this case $\lambda=C \cdot e^{\int^{x}\left(\frac{f-g}{g}\right) d s}$. (We have proved this in the class.)
b. Obtain similar results for the existence of integrating factors in the forms $\lambda(x-y), \lambda\left(x^{2}+y^{2}\right)$.
c. Solve the equations: i. $\left(t^{2}-x^{2}+1\right)+\left(t^{2}-x^{2}-1\right) x^{\prime}=0$,
ii. $y d x-\left(x^{2}+y^{2}+x\right) d y=0$.
