Ordinary differential equations for Math
 (201.1.0061. Spring 2023. Dmitry Kerner)
 Homework 4. Submission date: 25.04.2023

Questions to submit: 1.b. 1.d. 2.b. 2.d. 3.b. 3.c.ii. 4.c. 4.d. Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

1. a. Prove: the solutions of $x^{\prime}=e^{x^{2}}-t$ have no local minima. (\exists at least two different approaches.)
b. Prove: every local solution of $x^{\prime}=\sin ^{2}(t) \cdot e^{t \cdot \cos (x)}$ extends (uniquely) to $x(t) \in C^{\omega}(\mathbb{R})$, this global solution has infinite number of critical points, and all the critical points are flexes (i.e. neither maxima nor minima).
c. Prove: the local solution of $x^{\prime}=\frac{(x-1) \sin (t \cdot x)}{t^{2}+x^{2}+1}, x(0)=\frac{1}{2}$ extends (uniquely) to the global solution, $x(t) \in C^{\omega}(\mathbb{R})$. Moreover it satisfies: $0<x(t)<1$.
d. Prove: the IVP $x^{\prime}=\sum_{m=1}^{\infty} \frac{\sin (m \cdot x) \cdot \cos (m \cdot t)}{m \sqrt{5}}, x\left(t_{0}\right)=x_{0}$ admits the unique local solution for any $\left(t_{0}, x_{0}\right) \in \mathbb{R}^{2}$. Moreover, this solution extends (uniquely) to $x(t) \in C^{\omega}(\mathbb{R})$.
2. a. Prove: the sums/products in $\mathbb{R}[[\underline{x}]], \mathbb{C}[[z]], C^{\omega}(\mathcal{U}), \mathcal{O}(\mathcal{U})$ are well defined. (Therefore these are commutative rings.) For $C^{\omega}(\mathcal{U}), \mathcal{O}(\mathcal{U})$ don't forget to check: the product of locally convergent series is locally convergent.
b. Strengthen the statement of Abel's theorem for the power series $\sum a_{m} \underline{x}^{\underline{m}}$ to: "If for some $\underline{x}_{0} \in \mathbb{R}^{n}$ the set $\left\{\left|a_{\underline{m}} \underline{x}_{0}^{\underline{m}}\right|\right\}_{\underline{\underline{m}}}$ is 'sub-exponentially' bounded, i.e. $\lim _{|\underline{m}| \rightarrow \infty} \frac{\sum_{n}\left(1+\left|a_{\underline{m}} \underline{x}_{0}^{m}\right|\right)}{|\underline{m}|}=0$, then \ldots ".
c. Suppose the series $\sum a_{\underline{m}} \underline{x}^{\underline{m}}$ converges uniformly on $\mathcal{U} \subset \mathbb{R}^{n}$. Prove: $\partial_{x_{j}} \sum a_{\underline{m}} \underline{x}^{\underline{m}}=$ $\sum a_{\underline{m}} \partial_{x_{j}}\left(\underline{x}^{\underline{m}}\right)$ and $\int\left(\sum \overline{a_{\underline{m}}} \underline{x}^{\underline{m}}\right) d x_{j}=\sum a_{\underline{m}}\left(\int \underline{x}^{\underline{m}} d x_{j}\right)$.
d. Define $f(x)=e^{-\frac{1}{x^{2}}}$ for $x=0$ and $f(0)=0$. Prove: $f \in C^{\infty}\left(\mathbb{R}^{1}\right) \backslash C^{\omega}\left(\mathbb{R}^{1}\right)$.

Find the radius of convergence of the Taylor series of f at a point $x_{o} \neq 0$.
(Hint: no long computations are needed.)
e. Suppose $\mathcal{U} \subseteq \mathbb{R}^{n}$ is path-connected and $f \in C^{\omega}(\mathcal{U})$ vanishes locally near a point $x_{o} \in \mathcal{U}$. Prove: $f=0$ on the whole \mathcal{U}.
Does this hold also for C^{∞}-functions?
3. The set of convergence of a series is defined by $\mathfrak{S}:=\left\{\underline{x} \mid \sum a_{m} \underline{x}^{\underline{m}}\right.$ converges $\} \subseteq \mathbb{R}^{n}$.
a. Verify: for $n=1$ one has $(-R, R) \subseteq \mathfrak{S} \subseteq[-R, R]$, where R is the radius of convergence.
b. Fix some $a, b \in \mathbb{N}$ and find \mathfrak{S} for $\sum_{m} c_{m} \cdot\left(x^{a} y^{b}\right)^{m}$, here the sequence c_{\bullet} is bounded and $c_{m} \nrightarrow 0$. Among all the open boxes $\left(-x_{0}, x_{0}\right) \times\left(-y_{0}, y_{0}\right) \subset \mathfrak{S}$ does there exist "the largest box"? Is \mathfrak{S} a convex set?
c. (For $n>1$ we try to establish weaker versions of a.) (Dis)Prove:
i. $\mathfrak{S} \subseteq \overline{\operatorname{Int}(\mathfrak{S})}$ (the closure of the interior);
(Hint: $\left.f\left(x_{1}, x_{2}\right)=\frac{x_{1}}{1-x_{2}}\right)$
ii. \mathfrak{S} is of "star-type", i.e. for any $x \in \mathfrak{S}$ the segment $[o, x] \subset \mathbb{R}^{n}$ lies in \mathfrak{S}.
4. Define the distance between two sets $S_{1}, S_{2} \subset \mathbb{R}^{n}$ by $d\left(S_{1}, S_{2}\right):=\inf \left\{d\left(s_{1}, s_{2}\right) \mid s_{i} \in S_{i}\right\}$. Prove:
a. $d(x, S)=0$ iff $x \in \bar{S}$. (Give an example with $x \notin S$.)
b. If S is closed then $d(x, S)=d(x, s)$ for some $s \in S$. (What can happen if S is not closed?)
c. If $S_{1}, S_{2} \subset \mathbb{R}^{n}$ are bounded then $d\left(S_{1}, S_{2}\right)=0$ iff $\overline{S_{1}} \cap \overline{S_{2}} \neq \varnothing$.

Give an example of bounded sets with $S_{1} \cap S_{2}=\varnothing$ but $d\left(S_{1}, S_{2}\right)=0$.
Give an example of closed unbounded sets with $\overline{S_{1}} \cap \overline{S_{2}}=\varnothing$ but $d\left(S_{1}, S_{2}\right)=0$.
d. If S_{1}, S_{2} are compact then there exist $s_{1} \in S_{1}, s_{2} \in S_{2}$ such that $d\left(s_{1}, s_{2}\right)=d\left(S_{1}, S_{2}\right)$.

