Ordinary differential equations for Math (201.1.0061. Spring 2023. Dmitry Kerner) Homework 5. Submission date: 01.05.2023 Questions to submit: 1.a. 1.b. 1.d. 2.c. 2.f. 3.a. 4.a. 4.c. Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

(We did this in the class.)

- **1.**a. (Comparison test) Consider two equations $x' = f_i(t, x)$, i = 1, 2, and their solutions $x_i(t)$, both defined on $[t_0, t_1)$. Suppose $x_1(t_0) \leq x_2(t_0)$. Suppose the bound $f_1(t, x) \leq f_2(t, x)$ holds in a neighborhood of the curve $\{(t, x_1(t))\} \subset \mathcal{U}$. Prove: $x_1(t) \leq x_2(t)$ on $[t_0, t_1)$.
 - b. Why is the expansion $Taylor_{t_0}[f]$ presented as $e^{(t_1-t_0)\frac{d}{dt}}f|_{t=t_1}$ and not just $e^{(t-t_0)\frac{d}{dt}}f$?
 - c. Let x(t) be the (local) solution of $x' = e^{tx^2}$, x(0) = 0. Find $Taylor_0[x(t)]$ up to order 6.
 - d.Prove: the local solution of 1.c extends (uniquely) to $x(t) \in C^{\omega}(-\infty, \epsilon)$ but explodes (in finite time) on the interval $(\epsilon, 2)$.
- **2.**Let (X, d) be a metric space.
 - a. Prove: any convergent sequence is a Cauchy sequence, and the limit is unique.
 - b.Suppose (X, d) is complete. Prove: a subspace $Y \subset X$ is complete iff Y is closed.
 - c. Give a metric on X = (-1, 1) such that (X, d) is complete. (Does this contradict part b.?)
 - d. For a closed subset $X \subseteq \mathbb{R}^n$ consider $C^0(X)$, with *sup*-norm.
 - Prove: $C^0(X)$ is a complete normed space.
 - e. Suppose d_1, d_2 are equivalent metrics. Prove: (X, d_1) is complete iff (X, d_2) is complete.
 - f. Give an example of a non-complete metric space and a contractive map without fixed points.
 - g. Can the assumption in the fixed point theorem be weakened to " $d(\Psi(x),\Psi(y)) < d(x,y)$ for $x \neq y$ "?

3.a. Define the operator $\Psi: C^0[0,1] \to C^0[0,1]$ by $g \to \int_0^x g(t)dt$. Prove (for the max-norm): $\|\Psi(g)\| < \|g\|$ for g(0) = 0 and $g \neq 0$. Prove: for any $\epsilon > 0$ exists g satisfying: $\|\Psi(g)\| > (1-\epsilon) \cdot \|g\|$.

- b. Prove: $x(t) \in C^1$ is a solution of the IVP $x' = f(t, x), x(t_0) = x_0$ iff x(t) is a solution of the integral equation $x = x_0 + \int_{t_0}^t f(s, x) ds$.
- c. Write down Picard's approximation $x_3(t)$ for the IVP $x' = 1 + x^2$, $x(0) = x_0$. Prove: $x_k(t) \in C^{\omega}(\mathbb{R})$ for each $k \in \mathbb{N}$. Does this contradict the explosion of the solution at finite time? Prove: $x_k(t)$ converges to the solution for $|t| \leq \frac{1}{2x_0+2\sqrt{1+x_0^2}}$.

4. Let $\{x_k(t)\}$ be Picard's approximations for the IVP $x' = f(t, x), x(t_0) = x_0$, with $|f(t, x) - f(t, y)| \leq L \cdot |x - y|$ and $|f(t, x)| \leq L \cdot C$ on \mathcal{U} . Prove: a. $|x_{k+1}(t) - x_k(t)| \leq \frac{C \cdot L^{k+1} \cdot |t - t_0|^{k+1}}{(k+1)!}$ and $|x(t) - x_k(t)| \leq \frac{C \cdot L^k \cdot |t - t_0|^k}{k!}$, for t near t_0 . b. The series $x_m(t) + \sum_{k=m}^{\infty} [x_{k+1}(t) - x_k(t)]$ converges to the solution x(t). c. If $f \in C^r(\mathcal{U})$, for $r \leq \infty, \omega$, then $x_k(t) \in C^{r+1}$ for $k \geq 1$. Moreover, if $x_k(t) \rightrightarrows x(t)$ (uniformly) on $[t_0 - \epsilon, t_0 + \epsilon]$ then $x_k(t)^{(i)} \rightrightarrows x(t)^{(i)}$ on $[t_0 - \epsilon, t_0 + \epsilon]$, for all $i \leq r$.

- **5.** Define the function f(x) as $x^2 \cdot \sin \frac{1}{x^2}$ for x < 0, as \sqrt{x} for 0 < x < 1 and as $e^{-x^2} \cdot \sin(e^{x^3})$ for x > 1. (Dis)Prove:
 - a. f is locally Lipschitz at each point where it is defined.
 - b. f is Lipschitz on $(-\epsilon, \epsilon) \setminus \{0\}$.
 - c. f is Lipschitz on $(1 \epsilon, 1 + \epsilon) \setminus \{1\}$.
 - d. f is Lipschitz on $(-\infty, -1)$ and on $(1, \infty)$.