Ordinary differential equations for Math
 (201.1.0061. Spring 2023. Dmitry Kerner)
 Homework 5. Submission date: 01.05.2023

Questions to submit: 1.a. 1.b. 1.d. 2.c. 2.f. 3.a. 4.a. 4.c. Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

1.a. (Comparison test) Consider two equations $x^{\prime}=f_{i}(t, x), i=1,2$, and their solutions $x_{i}(t)$, both defined on $\left[t_{0}, t_{1}\right)$. Suppose $x_{1}\left(t_{0}\right) \leq x_{2}\left(t_{0}\right)$. Suppose the bound $f_{1}(t, x) \leq f_{2}(t, x)$ holds in a neighborhood of the curve $\left\{\left(t, x_{1}(t)\right)\right\} \subset \mathcal{U}$. Prove: $x_{1}(t) \leq x_{2}(t)$ on $\left[t_{0}, t_{1}\right)$.

c. Let $x(t)$ be the (local) solution of $x^{\prime}=e^{t x^{2}}, x(0)=0$. Find Taylor $_{0}[x(t)]$ up to order 6 .
d. Prove: the local solution of 1.c extends (uniquely) to $x(t) \in C^{\omega}(-\infty, \epsilon)$ but explodes (in finite time) on the interval $(\epsilon, 2)$.
2. Let (X, d) be a metric space.
a. Prove: any convergent sequence is a Cauchy sequence, and the limit is unique.
b. Suppose (X, d) is complete. Prove: a subspace $Y \subset X$ is complete iff Y is closed.
c. Give a metric on $X=(-1,1)$ such that (X, d) is complete. (Does this contradict part b.?)
d. For a closed subset $X \subseteq \mathbb{R}^{n}$ consider $C^{0}(X)$, with sup-norm.

Prove: $C^{0}(X)$ is a complete normed space.
e. Suppose d_{1}, d_{2} are equivalent metrics. Prove: $\left(X, d_{1}\right)$ is complete iff $\left(X, d_{2}\right)$ is complete.
f. Give an example of a non-complete metric space and a contractive map without fixed points.
g. Can the assumption in the fixed point theorem be weakened to " $d(\Psi(x), \Psi(y))<d(x, y)$ for $x \neq y$ "?
3.a. Define the operator $\Psi: C^{0}[0,1] \rightarrow C^{0}[0,1]$ by $g \rightarrow \int_{0}^{x} g(t) d t$.

Prove (for the max-norm): $\|\Psi(g)\|<\|g\|$ for $g(0)=0$ and $g \neq 0$.
Prove: for any $\epsilon>0$ exists g satisfying: $\|\Psi(g)\|>(1-\epsilon) \cdot\|g\|$.
(We did this in the class.)
b. Prove: $x(t) \in C^{1}$ is a solution of the IVP $x^{\prime}=f(t, x), x\left(t_{0}\right)=x_{0}$ iff $x(t)$ is a solution of the integral equation $x=x_{0}+\int_{t_{0}}^{t} f(s, x) d s$.
c. Write down Picard's approximation $x_{3}(t)$ for the IVP $x^{\prime}=1+x^{2}, x(0)=x_{0}$. Prove: $x_{k}(t) \in C^{\omega}(\mathbb{R})$ for each $k \in \mathbb{N}$. Does this contradict the explosion of the solution at finite time?
Prove: $x_{k}(t)$ converges to the solution for $|t| \leq \frac{1}{2 x_{0}+2 \sqrt{1+x_{0}^{2}}}$.
4. Let $\left\{x_{k}(t)\right\}$ be Picard's approximations for the IVP $x^{\prime}=f(t, x), x\left(t_{0}\right)=x_{0}$, with $\mid f(t, x)-$ $f(t, y)|\leq L \cdot| x-y \mid$ and $|f(t, x)| \leq L \cdot C$ on \mathcal{U}. Prove:
a. $\left|x_{k+1}(t)-x_{k}(t)\right| \leq \frac{C \cdot L^{k+1} \cdot\left|t-t_{0}\right|^{k+1}}{(k+1)!}$ and $\left|x(t)-x_{k}(t)\right| \leq \frac{C \cdot L^{k} \cdot\left|t-t_{0}\right|^{k}}{k!}$, for t near t_{0}.
b. The series $x_{m}(t)+\sum_{k=m}^{\infty}\left[x_{k+1}(t)-x_{k}(t)\right]$ converges to the solution $x(t)$.
c. If $f \in C^{r}(\mathcal{U})$, for $r \leq \infty, \omega$, then $x_{k}(t) \in C^{r+1}$ for $k \geq 1$. Moreover, if $x_{k}(t) \rightrightarrows x(t)$ (uniformly) on $\left[t_{0}-\epsilon, t_{0}+\epsilon\right]$ then $x_{k}(t)^{(i)} \rightrightarrows x(t)^{(i)}$ on $\left[t_{0}-\epsilon, t_{0}+\epsilon\right]$, for all $i \leq r$.
5.Define the function $f(x)$ as $x^{2} \cdot \sin \frac{1}{x^{2}}$ for $x<0$, as \sqrt{x} for $0<x<1$ and as $e^{-x^{2}} \cdot \sin \left(e^{x^{3}}\right)$ for $x>1$. (Dis)Prove:
a. f is locally Lipschitz at each point where it is defined.
b. f is Lipschitz on $(-\epsilon, \epsilon) \backslash\{0\}$.
c. f is Lipschitz on $(1-\epsilon, 1+\epsilon) \backslash\{1\}$.
d. f is Lipschitz on $(-\infty,-1)$ and on $(1, \infty)$.

