Ordinary differential equations for Math (201.1.0061. Spring 2023. Dmitry Kerner) Homework 6. Submission date: 7.05.2023 Questions to submit: 1. 2.b. 2.e. 2.f. 3.b. 3.f. 5.a.b.c. Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

- **1.** Prove: if $A \in Mat_{n \times n}(\mathbb{R})$ is \mathbb{C} -diagonalizable then A is \mathbb{R} -conjugate to a (real) block-diagonal matrix, with blocks of size ≤ 2 . Moreover, each 2×2 block can be brought to the form: a-b(Hint: the non-real eigenvectors of A come in conjugate pairs. $a \mid \cdot$ bBut we want a real basis, ...)
- **2.a.** Prove: the functions $A = \sqrt{trace(\bar{A}^t \cdot A)}, ||A||_{op} := \sup_{||v|| \neq 0} \frac{||Av||}{||v||}$ define norms on $Mat_{n \times n}(\mathbb{R})$ and $Mat_{n \times n}(\mathbb{C})$. Moreover, $||A \cdot B||_{op} \le ||A||_{op} \cdot ||B||_{op}$.
 - **b.**Disprove: i. $||A||_{op}$ equals the largest eigenvalue of A.
 - ii. The norm $\| \ast \|_{op}$ is conjugation-invariant (i.e. $\|A\|_{op} = \|UAU^{-1}\|_{op}$.)
 - c.Prove: the norms $|| * ||, || * ||_{op}$ are equivalent. Prove: these normed spaces are complete. d.Review questions 7,8 of homework.0

e.Prove: if $e^{At}e^{Bt} = e^{(A+B)t}$ holds for all $t \in (-\epsilon, \epsilon)$ then AB = BA.

- **f.**Prove: if $e^A = \mathbb{I}$ then A is \mathbb{C} -diagonalizable. What are the possible eigenvalues?
- **3.a.** Take the unit ball $Ball_1(\mathbb{O})_{op} := \{A \mid ||A||_{op} < 1\} \subset Mat_{n \times n}(\mathbb{C}).$ Prove: if $A \in Ball_1(\mathbb{O})_{op}$ then $\mathbb{I} + A \in GL(n, \mathbb{C})$.
 - **b.** For a marix $A \in Ball_1(\mathbb{O})_{op}$ define $ln(\mathbb{I} + A) := \sum_{k=1}^{\infty} \frac{(-1)^{k+1}A^k}{k}$. Prove: the series converges absolutely, and the convergence is uniform on compact subsets of $Ball_1(\mathbb{O})_{op}$.
 - c. Prove: $exp(ln(\mathbb{I}+A)) = \mathbb{I}+A = ln(e^{(\mathbb{I}+A)})$ for every $A \in Ball_1(\mathbb{O})$. (No long computations are needed here.)
 - **d.** Take the subset $Mat_{2\times 2}(\mathbb{C}) \supset \Sigma := \{A \mid e^A = \mathbb{I}, det(t\mathbb{I} A) = t^2 + 4\pi^2\}$. Identifying $Mat_{2\times 2}(\mathbb{C}) \cong \mathbb{C}^4$ prove: Σ is defined by one linear and one quadratic equation. (Hint: observe that any matrix in Σ must be diagonalizable.) Conclude: Σ contains a two-parametric family of matrices. (Therefore, while the map exp is locally invertible near 0, it is highly non-injective globally.)
 - e. Prove: if AB = BA and $A, B, A + B + AB \in Ball_1(\mathbb{O})_{op}$ then $ln[(\mathbb{I} + A)(\mathbb{I} + B)] =$ $ln(\mathbb{I} + A) + ln(\mathbb{I} + B)$. In particular, $ln[(\mathbb{I} + A)^k] = k \cdot ln(\mathbb{I} + A)$ for every $k \in \mathbb{Z}$.
 - **f.** Compute $\frac{d}{dt} ln(\mathbb{I} + At)$. (Do this in two ways, as we did for $\frac{d}{dt}e^{At}$ in the lecture.)
- **4.** Define the functions $Mat_{n\times n}(\mathbb{C}) \xrightarrow{sin,cos} Mat_{n\times n}(\mathbb{C})$ via the Taylor expansion of sin, cos. Prove: **a.** These series converge absolutely, the convergence is uniform on bounded subsets of $Mat_{n\times n}(\mathbb{C})$.
 - **b.** Prove:
 - **b.** Prove: $e^{iA} = cos(A) + i \cdot sin(A)$. $cos(A) = \frac{e^{iA} + e^{-iA}}{2}$. $sin(A) = \frac{e^{iA} e^{-iA}}{2i}$. **c.** Prove: $sin^2(A) + cos^2(A) = \mathbb{I}$. If AB = BA then $sin(A+B) = \cdots$, $cos(A+B) = \cdots$.
 - **d.** Compute $\frac{d}{dt}\cos(At)$ and $\frac{d}{dt}\sin(At)$. (Do this in two ways, as we did for $\frac{d}{dt}e^{At}$ in the lecture.)

5. In the following cases (without solving the equations):

- i. Identify the equilibria points. When are these points (un)stable nodes/saddles?
- ii. For which λ are there (un)bounded/periodic solutions?
- iii. For the cases a. and b. draw the phase portraits.

Now write down the general (real) solutions, and verify the previously obtained properties. **a.** $x' = y, y' = \lambda \cdot x$. (Distinguish between the cases $\lambda > 0, \lambda < 0$.)

b.
$$x' = \lambda x + y, \ y' = \lambda y.$$

c. $\underline{x}' = A \cdot \underline{x}$ for $A = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 2 & -1 & 0 \end{bmatrix}.$