Ordinary differential equations for Math
 (201.1.0061. Spring 2023. Dmitry Kerner)
 Homework 6. Submission date: 7.05.2023

Questions to submit: 1. 2.b. 2.e. 2.f. 3.b. 3.f. 5.a.b.c.
Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

1.Prove: if $A \in \operatorname{Mat}_{n \times n}(\mathbb{R})$ is \mathbb{C}-diagonalizable then A is \mathbb{R}-conjugate to a (real) block-diagonal matrix, with blocks of size ≤ 2. Moreover, each 2×2 block can be brought to the form: (Hint: the non-real eigenvectors of A come in conjugate pairs.
But we want a real basis, ...)
2.a.Prove: the functions $A=\sqrt{\operatorname{trace}\left(\bar{A}^{t} \cdot A\right)},\|A\|_{o p}:=\sup _{\|v\| \neq 0} \frac{\|A v\|}{\|v\|}$ define norms on $\operatorname{Mat}_{n \times n}(\mathbb{R})$ and $\operatorname{Mat}_{n \times n}(\mathbb{C})$. Moreover, $\|A \cdot B\|_{o p} \leq\|A\|_{o p} \cdot\|B\|_{o p}$.
b.Disprove: i. $\|A\|_{o p}$ equals the largest eigenvalue of A.
ii. The norm $\|*\|_{o p}$ is conjugation-invariant (i.e. $\|A\|_{o p}=\left\|U A U^{-1}\right\|_{o p}$.)
c. Prove: the norms $\|*\|,\|*\|_{o p}$ are equivalent. Prove: these normed spaces are complete.
d.Review questions 7,8 of homework. 0
e.Prove: if $e^{A t} e^{B t}=e^{(A+B) t}$ holds for all $t \in(-\epsilon, \epsilon)$ then $A B=B A$.
f.Prove: if $e^{A}=\mathbb{I}$ then A is \mathbb{C}-diagonalizable. What are the possible eigenvalues?
3.a. Take the unit ball $\operatorname{Ball}_{1}(\mathbb{O})_{o p}:=\left\{A \mid\|A\|_{o p}<1\right\} \subset \operatorname{Mat}_{n \times n}(\mathbb{C})$. Prove: if $A \in \operatorname{Ball}_{1}(\mathbb{O})_{o p}$ then $\mathbb{I}+A \in G L(n, \mathbb{C})$.
b. For a marix $A \in \operatorname{Ball}_{1}(\mathbb{O})_{o p}$ define $\ln (\mathbb{I}+A):=\sum_{k=1}^{\infty} \frac{(-1)^{k+1} A^{k}}{k}$. Prove: the series converges absolutely, and the convergence is uniform on compact subsets of $\operatorname{Ball}_{1}(\mathbb{O})_{o p}$.
c. Prove: $\exp (\ln (\mathbb{I}+A))=\mathbb{I}+A=\ln \left(e^{(\mathbb{I}+A)}\right)$ for every $A \in \operatorname{Ball}_{1}(\mathbb{O})$. (No long computations are needed here.)
d. Take the subset $\operatorname{Mat}_{2 \times 2}(\mathbb{C}) \supset \Sigma:=\left\{A \mid e^{A}=\mathbb{I}\right.$, $\left.\operatorname{det}(t \mathbb{I}-A)=t^{2}+4 \pi^{2}\right\}$. Identifying $M_{2 \times 2}(\mathbb{C}) \cong \mathbb{C}^{4}$ prove: Σ is defined by one linear and one quadratic equation. (Hint: observe that any matrix in Σ must be diagonalizable.)
Conclude: Σ contains a two-parametric family of matrices. (Therefore, while the map exp is locally invertible near 0 , it is highly non-injective globally.)
e. Prove: if $A B=B A$ and $A, B, A+B+A B \in \operatorname{Ball}_{1}(\mathbb{O})_{o p}$ then $\ln [(\mathbb{I}+A)(\mathbb{I}+B)]=$ $\ln (\mathbb{I}+A)+\ln (\mathbb{I}+B)$. In particular, $\ln \left[(\mathbb{I}+A)^{k}\right]=k \cdot \ln (\mathbb{I}+A)$ for every $k \in \mathbb{Z}$.
f. Compute $\frac{d}{d t} \ln (\mathbb{I}+A t)$. (Do this in two ways, as we did for $\frac{d}{d t} e^{A t}$ in the lecture.)
4. Define the functions $\operatorname{Mat}_{n \times n}(\mathbb{C}) \xrightarrow{s i n, c o s} \operatorname{Mat}_{n \times n}(\mathbb{C})$ via the Taylor expansion of sin, cos. Prove:
a. These series converge absolutely, the convergence is uniform on bounded subsets of $M a t_{n \times n}(\mathbb{C})$.
b. Prove: $\quad e^{i A}=\cos (A)+i \cdot \sin (A) . \quad \cos (A)=\frac{e^{i A}+e^{-i A}}{2} . \quad \sin (A)=\frac{e^{i A}-e^{-i A}}{2 i}$.
c. Prove: $\sin ^{2}(A)+\cos ^{2}(A)=\mathbb{I}$. If $A B=B A$ then $\sin (A+B)=\cdots, \quad \cos (A+B)=\cdots$.
d. Compute $\frac{d}{d t} \cos (A t)$ and $\frac{d}{d t} \sin (A t)$. (Do this in two ways, as we did for $\frac{d}{d t} e^{A t}$ in the lecture.)
5.In the following cases (without solving the equations):
i. Identify the equilibria points. When are these points (un)stable nodes/saddles?
ii. For which λ are there (un)bounded/periodic solutions?
iii. For the cases a. and b. draw the phase portraits.

Now write down the general (real) solutions, and verify the previously obtained properties.
a. $x^{\prime}=y, y^{\prime}=\lambda \cdot x$. (Distinguish between the cases $\lambda>0, \lambda<0$.)
b. $x^{\prime}=\lambda x+y, y^{\prime}=\lambda y$.
c. $\underline{x}^{\prime}=A \cdot \underline{x} \quad$ for $A=\left[\begin{array}{ccc}1 & 1 & -1 \\ 1 & 1 & -1 \\ 2 & -1 & 0\end{array}\right]$.

