Ordinary differential equations for Math

(201.1.0061. Spring 2023. Dmitry Kerner)

Homework 7. Submission date: 14.05.2023
Questions to submit: 1.b.d. 2.a.b.c.e. 3.c.
Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

1. Consider the system of differential equations $\underline{x}^{\prime}=A \cdot \underline{x}, A \in M a t_{n \times n}(\mathbb{R})$. Prove:
a. If $\underline{x}(t)$ is a solution then all its derivatives are solutions.
b. If $A=A^{t}$ then there are no (non-constant) periodic solutions.
c. If $A=-A^{t}$ then the space of solutions is spanned by periodic solutions.

Does this imply that every solution is periodic?
d. If A is of odd size then there exists an unbounded solution.
e. What is the necessary and sufficient condition on A to ensure $\lim _{t \rightarrow \infty} \underline{x}(t)=\underline{0}$ for each solution?
f. If A is \mathbb{R}-diagonalizable and the eigenvalues have the same sign then $\underline{x}=0$ is a nodal point. (Attracting or repelling)
g. The solutions are analytic in the initial data, $x\left(t, t_{0}, x_{0}, A\right) \in C^{\omega}\left(\mathbb{R}_{t} \times \mathbb{R}_{t_{0}} \times \mathbb{R}_{x_{0}}^{n} \times M a t_{n \times n}(\mathbb{R})\right)$.
h. The set of equilibrium points is a vector subspace of \mathbb{R}^{n}. (What is the dimension?)
2. a. Write down the general (real) solutions of the equations

$$
\begin{array}{ll}
\text { i. } x^{(n+2)} \pm b^{2} x^{(n)}=0 . & \text { ii. } x^{(4)}+2 x^{(3)}+2 x^{(2)}=0 .
\end{array}
$$

b. Find the condition on a, b to ensure: 0 is a stable equilibrium point of $x^{(2)}+a \cdot x^{\prime}+b \cdot x=0$.
c. Find an equation $x^{(n)}+a_{n-1} x^{(n-1)}+\cdots+a_{0} x=0$ of minimal possible order whose general solution contains the functions $\sin (2 t) \cdot e^{t}, \cos (2 t) \cdot e^{2 t}, t^{2}$. Explain why is this order minimal. Prove: the coefficients $\left\{a_{j}\right\}$ are uniquely determined.
d. Fix a finite set of pairwise distinct complex numbers $\left\{\lambda_{k}\right\}$ and some natural numbers $\left\{p_{k}\right\}$. Prove: the functions $\left\{t^{j} \cdot e^{\lambda_{k} t}\right\}_{\substack{1 \leq k \leq n \\ 0 \leq j \leq p_{k}}}$ are \mathbb{C}-linearly independent. (Can you do this in several different ways?)
e. Prove the \mathbb{R}-version of part d., about the \mathbb{R}-linear independence of the functions $\left\{t^{j} e^{a_{k} t}\right.$. $\left.\cos \left(b_{k} \cdot t\right)\right\},\left\{t^{j} e^{a_{k} t} \cdot \sin \left(c_{k} \cdot t\right)\right\}$.
3. Consider the ODE $x^{(n)}+a_{n-1} x^{(n-1)}+\cdots+a_{0} x=0$ and the equation $\lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{0}=0$.
a.(Dis)prove: if all the λ-roots are imaginary, simple then every solution of this ODE is periodic.
b. (Dis)prove: if all the λ-roots are real-positive then every solution of this ODE is monotonic.
c.Prove: for any tuple $\left(a_{n-1}, \ldots, a_{1}\right)$ there exists a finite subset $S \subset \mathbb{R}$ such that for $a_{0} \in \mathbb{R} \backslash S$ the space of solutions is spanned by exponents. (Hint: when does a polynomial have a multiple root?)
This phenomenon causes statements like "The solutions $t^{j} e^{\lambda t}$ never appear in laboratory".
4. Prove: any (finite) system of ODE's, $\underline{f}\left(t, \underline{x}, \underline{x}^{\prime}, \ldots, \underline{x}^{(k+1)}\right)=\underline{0}$, is equivalent to a system of 1 'st order ODE's, $\underline{F}\left(t, \underline{y}, \underline{y^{\prime}}\right)=\underline{0}$. (Namely, every solution of \underline{f} leads to a solution of \underline{F} and vice versa.)
Moreover, if the initial system $f(\ldots)$ is in the normal form/autonomic/linear/polynomial then the resulting system $\underline{F}(\ldots)$ is of this type as well.

