Ordinary differential equations for Math (201.1.0061. Spring 2023. Dmitry Kerner) Homework 7. Submission date: 14.05.2023 Questions to submit: 1.b.d. 2.a.b.c.e. 3.c.

Homeworks must be either typed (e.g. in Latex) or written in readable handwriting and scanned in readable resolution.

- **1.** Consider the system of differential equations $\underline{x}' = A \cdot \underline{x}, A \in Mat_{n \times n}(\mathbb{R})$. Prove:
 - **a.** If $\underline{x}(t)$ is a solution then all its derivatives are solutions.
 - **b.** If $A = A^t$ then there are no (non-constant) periodic solutions.
 - c. If $A = -A^t$ then the space of solutions is spanned by periodic solutions. Does this imply that every solution is periodic?
 - **d.** If A is of odd size then there exists an unbounded solution.
 - e. What is the necessary and sufficient condition on A to ensure $\lim \underline{x}(t) = \underline{0}$ for each solution?
 - **f.** If A is \mathbb{R} -diagonalizable and the eigenvalues have the same sign then $\underline{x} = 0$ is a nodal point. (Attracting or repelling)
 - **g.** The solutions are analytic in the initial data, $x(t, t_0, x_0, A) \in C^{\omega}(\mathbb{R}_t \times \mathbb{R}_{t_0} \times \mathbb{R}_{x_0}^n \times Mat_{n \times n}(\mathbb{R})).$
 - **h.** The set of equilibrium points is a vector subspace of \mathbb{R}^n . (What is the dimension?)
- **2. a.** Write down the general (real) solutions of the equations i. $x^{(n+2)} \pm b^2 x^{(n)} = 0$. ii. $x^{(4)} + 2x^{(3)} + 2x^{(2)} = 0$.
 - **b.** Find the condition on a, b to ensure: 0 is a stable equilibrium point of $x^{(2)} + a \cdot x' + b \cdot x = 0$.
 - c. Find an equation $x^{(n)} + a_{n-1}x^{(n-1)} + \cdots + a_0x = 0$ of minimal possible order whose general solution contains the functions $sin(2t) \cdot e^t$, $cos(2t) \cdot e^{2t}$, t^2 . Explain why is this order minimal. Prove: the coefficients $\{a_i\}$ are uniquely determined.
 - **d.** Fix a finite set of pairwise distinct complex numbers $\{\lambda_k\}$ and some natural numbers $\{p_k\}$. Prove: the functions $\{t^j \cdot e^{\lambda_k t}\}_{\substack{1 \le k \le n \\ 0 \le j \le p_k}}$ are \mathbb{C} -linearly independent.

(Can you do this in several different ways?)

- e. Prove the \mathbb{R} -version of part d., about the \mathbb{R} -linear independence of the functions $\{t^j e^{a_k t} \cdot cos(b_k \cdot t)\}, \{t^j e^{a_k t} \cdot sin(c_k \cdot t)\}.$
- **3.** Consider the ODE $x^{(n)} + a_{n-1}x^{(n-1)} + \cdots + a_0x = 0$ and the equation $\lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_0 = 0$. **a.** (Dis)prove: if all the λ -roots are imaginary, simple then every solution of this ODE is periodic. **b.** (Dis)prove: if all the λ -roots are real-positive then every solution of this ODE is monotonic.
 - **c.** Prove: for any tuple (a_{n-1}, \ldots, a_1) there exists a finite subset $S \subset \mathbb{R}$ such that for $a_0 \in \mathbb{R} \setminus S$ the space of solutions is spanned by exponents. (Hint: when does a polynomial have a multiple root?)

This phenomenon causes statements like "The solutions $t^j e^{\lambda t}$ never appear in laboratory".

4. Prove: any (finite) system of ODE's, $\underline{f}(t, \underline{x}, \underline{x}', \dots, \underline{x}^{(k+1)}) = \underline{0}$, is equivalent to a system of 1'st order ODE's, $\underline{F}(t, \underline{y}, \underline{y}') = \underline{0}$. (Namely, every solution of \underline{f} leads to a solution of \underline{F} and vice versa.)

Moreover, if the initial system $\underline{f}(...)$ is in the normal form/autonomic/linear/polynomial then the resulting system $\underline{F}(...)$ is of this type as well.