Ordinary differential equations for Math

(201.1.0061. Spring 2023. Dmitry Kerner)

Homework 8. Submission date: 27.05.2023
Questions to submit: 1 2.a. 2.c. 3.a. 3.c. 4.b. 5.b. Either typed or in readable handwriting and scanned in readable resolution.

1. Write the general solution of the equation $\underline{x}^{\prime}=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & 2 & 3\end{array}\right] \cdot \underline{x}+\left[\begin{array}{c}3 e^{t} \\ 0 \\ 3 e^{-t}\end{array}\right]$.
2. a. Prove: if the function $g(\underline{x})>0$ is continuous then the systems $\underline{x}^{\prime}=\underline{f}(\underline{x})$ and $\underline{x}^{\prime}=$ $g(\underline{x}) \cdot \underline{f}(\underline{x})$ have the same phase potraits. (What happens for $g<0$?)
b. Prove: the phase curves of the system $\underline{x}^{\prime}=\underline{f}(\underline{x}), \underline{f} \in C^{1}(\mathcal{U})$ for $\mathcal{U} \subseteq \mathbb{R}^{n}$, cover the whole \mathcal{U} and either coincide or do not intersect.
c. Consider the system $x^{\prime}=\sin (x) \cdot\left(e^{y^{2}}+x^{4}\right), y^{\prime}=\sin (\cos (y)) \cdot\left(e^{x^{2}}+y^{3}\right)$.
i. Find the equilibria points.
ii. Prove: there exist infinity of phase curves that are parallel to \hat{y}-axis. Moreover, each of these curves is an open interval of length $<\pi$. (And the same for \hat{x}-axis.)
iii. Prove: any local solution extends (uniquely) to the global solution $x(t), y(t) \in C^{\omega}(\mathbb{R})$.
3. Consider the system $\underline{x}^{\prime}=\underline{f}(t, \underline{x})$, with $\underline{f} \in C^{r}\left((a, b) \times \mathbb{R}^{n}\right)$. We have proved: If $|\underline{x} \cdot \underline{f}(t, \underline{x})| \leq$ $g(t) \cdot\left(1+\|\underline{x}\|^{2}\right)$ then any solution extends to $C^{r+1}(a, b)$.
a. Instead of $|\underline{x} \cdot \underline{f}(t, \underline{x})| \leq g(t) \cdot\left(1+\mid \underline{x} \|^{2}\right)$ one could take the condition $|\underline{x} \cdot \underline{f}(t, \underline{x})| \leq$ $g_{0}(t)+g_{1}(t) \cdot\left\|\underline{x} \overline{\|}+g_{2}(t) \cdot\right\| \underline{x} \|^{2}$, for some g_{0}, g_{1}, g_{2}. Prove: this condition is not essentially weaker. Namely, this condition holds for some g_{0}, g_{1}, g_{2} iff the previous condition holds for some g.
b. Suppose the bound $|\underline{x} \cdot f(t, \underline{x})| \leq g(t) \cdot\left(1+\phi\left(| | \underline{x} \|^{2}\right)\right)$ holds for some function $g(t)$ and a function $\phi(y) \geq 0$ satisfying: $\int_{0}^{\infty} \frac{d y}{1+\phi(y)}=\infty$. Prove: any solution extends to $C^{r+1}(a, b)$. For which function ϕ do we get the criterion proved in the class? For which functions ϕ we get a stronger criterion?
c. Consider the equation $x^{(n)}=f\left(t, x, \ldots, x^{(n-1)}\right)$, where $f \in C^{r}\left((a, b) \times \mathbb{R}^{n}\right)$. Denote $\underline{y}=\left(y_{0}, \ldots, y_{n-1}\right)$. Suppose the bound $\left|y_{n-1} \cdot f(t, \underline{y})\right| \leq g(t) \cdot\left(1+|\underline{y}|^{2}\right)$ holds in $(a, b) \times \mathbb{R}^{n}$. Prove: any local solution extends to a global one, $x(t) \in C^{r+1}(a, \bar{b})$.
4. a. Verify: $e^{\underline{a} \cdot \nabla} f(\underline{x})=f(\underline{x}+\underline{a})$, here $\nabla=\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)$.
b. Write down the Taylor expansion of a solution $\underline{x}(t)$ of $\underline{x}^{\prime}=A \cdot \underline{x}$ using the general formula for Taylor power series, as was given in the class. Verify that you get $\underline{x}(t)=e^{A\left(t-t_{0}\right)} \cdot \underline{x}_{0}$.
c. Let $\underline{x}(t)$ be the solution of $\underline{x}^{\prime}=A(t) \cdot \underline{x}, \underline{x}\left(t_{0}\right)=\underline{x}_{0}$. Compute the Taylor expanion of $\underline{x}(t)$ up to order 3 . (Attention, the matrices $A(t), A^{\prime}(t)$ do not necessarily commute.)
5. a. Let $A(t) \in M a t_{n \times n}\left(C^{r}(\mathbb{R})\right)$, for $1 \leq r \leq \infty, \omega$. Prove: any local solution of $\underline{x}^{\prime}=A(t) \cdot \underline{x}$ extends (uniquely) to a global solution $\underline{x}(t) \in C^{r+1}(\mathbb{R})$.
b. Let $\underline{x}(t), \underline{y}(t)$ be solutions of $\underline{x}^{\prime}=A(t) \cdot \underline{x}$. Prove: $\|\underline{x}(t)-\underline{y}(t)\| \leq\left\|\underline{x}\left(t_{0}\right)-\underline{y}\left(t_{0}\right)\right\| \cdot$ $e^{\int_{t_{0}}^{t}\|A(s)\| o p d s}$.
c. Consider the system $\underline{x}^{\prime}=f(t, \underline{x})$ for $f \in C^{0}(\mathcal{U})$. Suppose $|(\underline{x}-\underline{y}) \cdot(\underline{f}(t, \underline{x})-\underline{f}(t, \underline{y}))| \leq$ $g(t) \cdot e^{\|\underline{x}-\underline{y}\|^{2}}$ in \mathcal{U}. Prove: any solutions $\underline{x}(t), \underline{y}(t) \in C^{1}(a, b)$ satisfy $|\underline{x}(t)-\underline{y}(\bar{t})|^{2} \leq$ $|\underline{x}(0)-\underline{y}(0)|^{2}-\ln \left[1-e^{|\underline{x}(0)-\underline{y}(0)|^{2}} \cdot \int_{t_{0}}^{t} g(s) d s\right]$. (We assume here $e^{\underline{x}(0)-\left.\underline{y}(0)\right|^{2}} \cdot \int_{t_{0}}^{t} g(s) d s<1$.)
