## Ordinary differential equations for Math

(201.1.0061. Spring 2023. Dmitry Kerner)

Homework 9. Submission date: 03.06.2023
Questions to submit: 1.a. 2.i. 2.ii. 2.iv. 2.v. 3.b. 4.c. 5.b. 5.c. Either typed or in readable handwriting and scanned in readable resolution.

1. Consider the equation $\underline{x}^{\prime}=A \cdot \underline{x}+e^{\mu t} t^{k} \cdot \underline{b}$, here $\underline{b}$ is a constant vector. Prove:
a. If $\mu$ is not an eigenvalue of $A$ then there exists a solution of the form $e^{\mu t} \cdot \underline{g}(t)$, where the entries of $g$ are polynomials of degree $\leq k$.
b. If $\mu$ is an eigenvalue of $A$ then there exists a solution of the form $e^{\mu t} \underline{g}(t)$, where the entries of $\underline{g}$ are polynomials of degree $\leq k+$ Jord.Size. $(A)$, here Jord.Size. $(A)$ is the size of the maximal Jordan cell of $A$.
2. Prove: i. $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{trace}(A)}$. ii. $\operatorname{det}[\mathbb{I}+\epsilon A]=1+\epsilon \cdot \operatorname{trace}(A)+O\left(\epsilon^{2}\right)$. iii. $\left\|e^{A}\right\|_{o p} \leq e^{\|A\|_{o p}}$. iv. $e^{A}=\lim _{k \rightarrow \infty}\left(\mathbb{I}+\frac{A}{k}\right)^{k} . \quad$ v. If $A(t) \in G L\left(n, C^{1}(a, b)\right)$ then $\left(A(t)^{-1}\right)^{\prime}=-A(t)^{-1} A^{\prime}(t) A(t)^{-1}$.
3. a. Write the general solution of the system $x^{\prime}=\frac{x}{1+t^{2}}+y \cdot \sin (2 t), y^{\prime}=y \cdot \cos (t)$.
b. Write the general solution of the equation $\left(\frac{d}{d t}-a_{1}(t)\right) \mathrm{o}\left(\frac{d}{d t}-a_{2}(t)\right) x=0, a_{1}(t), a_{2}(t) \in C^{1}(a, b)$.
c. Find the full Taylor series of the solution of $x^{\prime \prime}+t^{p} \cdot x=0, \quad p \in \mathbb{N}, \quad x(0)=0, x^{\prime}(0)=1$.
4. a. Suppose the matrices $A(t)$ and $\int_{t_{0}}^{t} A(s) d s$ commute for each $t \in(a, b)$.

Prove: the (unique) solution of $\underline{x}^{\prime}=A(t) \cdot \underline{x}, \underline{x}\left(t_{0}\right)=\underline{x}_{0}$ is given by $\underline{x}(t)=e^{\int_{t_{0}}^{t} A(s) d s} \underline{x}_{0}$.
b. Let $\left\{A_{j}\right\}$ be some constant pairwise commuting matrices. Let $\left\{g_{j}(t)\right\}$ be $C^{0}(a, b)$.

Solve the system $\underline{x}^{\prime}=\left(\sum g_{j}(t) A_{j}\right) \underline{x}, \underline{x}\left(t_{0}\right)=\underline{x}_{0}$.
c. Prove that the assumption in a. implies: the matrices $A(t)^{\prime}$ and $\int_{t_{0}}^{t} A(s) d s$ commute for each $t \in(a, b)$.
d. Give an example of equation $\underline{x}^{\prime}=A(t) \cdot \underline{x}$ for which $e^{\int_{t_{0}}^{t} A(s) d s} \underline{x}_{0}$ is not a solution.
5. Equations of type $t^{n} x^{(n)}+a_{n-1} t^{n-1} x^{(n-1)}+\cdots+a_{1} t x^{\prime}+a_{0} x=0$ are called Euler-Cauchy equations. They are used e.g. in physics and in finance.
a. One approach to solve is by time rescaling. Prove: the substitution $t=e^{\tau}$ transforms the Euler-Cauchy equation into a linear ODE with constant coefficients.
b. Write the general solution for the ODE $t^{2} x^{\prime \prime}+t x^{\prime}+a_{0} x=0$.
c. In the general case prove: the characteristic polynomial of the obtained ODE with constant coefficient is $L(\lambda):=\lambda(\lambda-1) \cdots(\lambda-n+1)+a_{n-1} \lambda(\lambda-1) \cdots(\lambda-n+2)+\cdots+a_{0}$.
d. Prove: if one presents $L(\lambda)=\lambda^{n}+b_{n-1} \lambda^{n-1}+\cdots+b_{0}$ then the initial equation can be presented as $\left(t \frac{d}{d t}\right)^{n} x+b_{b-1}\left(t \frac{d}{d t}\right)^{n-1} x+\cdots+b_{0} x=0$.
e. Conclude: for $t \neq 0$ the space of solutions of a Euler-Cauchy equation is spanned by the functions of type $\left\{\ln (t)^{k_{j}} \cdot t^{\lambda_{j}}\right\}$, with $k_{j} \in \mathbb{N}$. Here the function $t^{\lambda}$ for $\lambda \in \mathbb{C}$ is defined by $t^{\lambda}:=e^{\lambda \cdot \ln (t)}=|t|^{\operatorname{Re}(\lambda)}(\cos (\operatorname{Im}(\lambda) \ln (t))+i \cdot \sin (\operatorname{Im}(\lambda) \ln (t)))$.

