Ordinary differential equations for Math (201.1.0061. Spring 2023. Dmitry Kerner) Homework 9. Submission date: 03.06.2023

Questions to submit: 1.a. 2.i. 2.ii. 2.iv. 2.v. 3.b. 4.c. 5.b. 5.c.

Either typed or in readable handwriting and scanned in readable resolution.

- **1.** Consider the equation $\underline{x}' = A \cdot \underline{x} + e^{\mu t} t^k \cdot \underline{b}$, here \underline{b} is a constant vector. Prove:
 - **a.** If μ is not an eigenvalue of A then there exists a solution of the form $e^{\mu t} \cdot \underline{g}(t)$, where the entries of g are polynomials of degree $\leq k$.
 - **b.** If μ is an eigenvalue of A then there exists a solution of the form $e^{\mu t}\underline{g}(t)$, where the entries of \underline{g} are polynomials of degree $\leq k + Jord.Size.(A)$, here Jord.Size.(A) is the size of the maximal Jordan cell of A.
- 2. Prove: i. $det(e^A) = e^{trace(A)}$. ii. $det[\mathbb{I} + \epsilon A] = 1 + \epsilon \cdot trace(A) + O(\epsilon^2)$. iii. $||e^A||_{op} \le e^{||A||_{op}}$. iv. $e^A = \lim_{k \to \infty} (\mathbb{I} + \frac{A}{k})^k$. v. If $A(t) \in GL(n, C^1(a, b))$ then $(A(t)^{-1})' = -A(t)^{-1}A'(t)A(t)^{-1}$.

3. a. Write the general solution of the system $x' = \frac{x}{1+t^2} + y \cdot sin(2t), y' = y \cdot cos(t)$. **b.** Write the general solution of the equation $(\frac{d}{dt} - a_1(t)) \circ (\frac{d}{dt} - a_2(t)) x = 0, a_1(t), a_2(t) \in C^1(a, b)$. **c.** Find the full Taylor series of the solution of $x'' + t^p \cdot x = 0, p \in \mathbb{N}, x(0) = 0, x'(0) = 1$.

4. a. Suppose the matrices A(t) and $\int_{t_0}^t A(s) ds$ commute for each $t \in (a, b)$.

Prove: the (unique) solution of $\underline{x}' = A(t) \cdot \underline{x}$, $\underline{x}(t_0) = \underline{x}_0$ is given by $\underline{x}(t) = e^{\int_{t_0}^t A(s)ds} \underline{x}_0$. **b.** Let $\{A_j\}$ be some constant pairwise commuting matrices. Let $\{g_j(t)\}$ be $C^0(a, b)$.

- Solve the system $\underline{x}' = (\sum g_j(t)A_j)\underline{x}, \ \underline{x}(t_0) = \underline{x}_0.$
- c. Prove that the assumption in **a.** implies: the matrices A(t)' and $\int_{t_0}^t A(s)ds$ commute for each $t \in (a, b)$.
- **d.** Give an example of equation $\underline{x}' = A(t) \cdot \underline{x}$ for which $e^{\int_{t_0}^t A(s)ds} \underline{x}_0$ is not a solution.
- **5.** Equations of type $t^n x^{(n)} + a_{n-1}t^{n-1}x^{(n-1)} + \cdots + a_1tx' + a_0x = 0$ are called Euler-Cauchy equations. They are used e.g. in physics and in finance.
 - **a.** One approach to solve is by time rescaling. Prove: the substitution $t = e^{\tau}$ transforms the Euler-Cauchy equation into a linear ODE with constant coefficients.
 - **b.** Write the general solution for the ODE $t^2x'' + tx' + a_0x = 0$.
 - **c.** In the general case prove: the characteristic polynomial of the obtained ODE with constant coefficient is $L(\lambda) := \lambda(\lambda 1) \cdots (\lambda n + 1) + a_{n-1}\lambda(\lambda 1) \cdots (\lambda n + 2) + \cdots + a_0$.
 - **d.** Prove: if one presents $L(\lambda) = \lambda^n + b_{n-1}\lambda^{n-1} + \cdots + b_0$ then the initial equation can be presented as $(t\frac{d}{dt})^n x + b_{b-1}(t\frac{d}{dt})^{n-1}x + \cdots + b_0x = 0.$
 - e. Conclude: for $t \neq 0$ the space of solutions of a Euler-Cauchy equation is spanned by the functions of type $\{ln(t)^{k_j} \cdot t^{\lambda_j}\}$, with $k_j \in \mathbb{N}$. Here the function t^{λ} for $\lambda \in \mathbb{C}$ is defined by $t^{\lambda} := e^{\lambda \cdot ln(t)} = |t|^{Re(\lambda)} (cos(Im(\lambda)ln(t)) + i \cdot sin(Im(\lambda)ln(t))).$