Introduction to Mixed Hodge Modules

Morihiko Saito
RIMS Kyoto University
Kyoto 606 Japan

In this note we give an elementary introduction to the theory of Mixed Hodge Modules [51-5]. Philosophically the Mixed Hodge Modules are the objects in char. 0 which correspond to the perverse mixed complexes in char. p (cf. [82] [BBBD]) by the dictionary of Deligne [61]. For the definition of Mixed Hodge Modules we have to use essentially the theory of filtered D-Modules and vanishing cycle functors. But in this note we try to avoid the technical difficulties as much as possible; e.g. the knowledge of D-Modules is not supposed in §1-2.

§1. How to use Mixed Hodge Modules.

1.1. Let \(X \) be an algebraic variety over \(\mathbb{Q} \) assumed always separated and reduced. We associate to \(X \) its cohomology groups \(H^i(X, \mathbb{Z}) \) functorially, and Deligne's Fundamental result [61] says that these cohomologies carry the natural mixed Hodge structure functorially. This result can be generalized to homologies, local cohomologies [loc. cit.] and Borel-Moore homologies [61] etc. But to do so more systematically and generalize these results, e.g. to define the pure Hodge structure on intersection cohomologies, we can argue as follows.

1.2. We first make refinement of the cohomology theory due to Verdier etc. Instead of abelian groups \(H^i(X, \mathbb{Z}) \) etc. we associate to \(X \) the category \(\mathbb{D}^b_{\text{qc}}(\mathbb{Q}) \) (the derived category of bounded \(\mathbb{Q} \)-complexes with constructible cohomologies [61]). Here we change the coefficient \(\mathbb{Z} \) by \(\mathbb{Q} \) for the relation with the perverse sheaves. Then these categories are stable by the natural functors like \(\mathbb{R} f_* \), \(\mathbb{R} f_! \), \(\mathbb{R} f^! \), \(\mathbb{D} f_* \), \(\mathbb{D} f_! \), \(\mathbb{D} g_* \), \(\mathbb{D} g_! \), \(\mathbb{Q} \mathbb{G} \mathbb{M} \), \(\mathbb{Q} \mathbb{G} \mathbb{M} \mathbb{H} \mathbb{om} \), where \(f \) is a morphism of varieties and \(g \) is...
a function. Here $\psi_{E,1}$ is the unipotent monodromy part of ϕ_E (cf. [D3] for the definition of vanishing cycle functors ψ_E, Φ_E). As to the direct images and the pull-backs we have the adjoint relations (cf. [V2]):

$$(1.2.1) \quad \text{Hom}(f^*N, N) = \text{Hom}(N, f_*(N)) \quad \text{Hom}(f^*N, N) = \text{Hom}(N, f^!N)$$

and $\mathbb{D}^2 = 1$, $\mathbb{D}f^* = f_!, \mathbb{D}f^* = f^!$. Let Z be a closed subvariety of X, and $1 : Z \to X$ and $\alpha_X : X \to pt$ the natural morphisms so that $\mathbb{Q}_X = \mathbb{Q}_X^A$, $\mathbb{D}_X = -\mathbb{Q}_X^A$ and $\mathbb{D}_X^1 = \mathbb{R}_X^1$. Then $H^i(X, \mathbb{Q})$, $H^i(X, \mathbb{Q}_X)$, $H^i_\mathbb{D}(X, \mathbb{Q})$ and $H^i_\mathbb{D}(X, \mathbb{Q}_X)$ are respectively the cohomologies of

$$(a_X)_*\mathbb{Q}_X, (a_X)_!\mathbb{Q}_X, (a_X)_*\mathbb{Q}_X^A, (a_X)_!\mathbb{Q}_X^A$$

Moreover the restriction morphism

$$f_\mathbb{D} : a_X_*\mathbb{Q}_X \to a_Y_*\mathbb{Q}_Y$$

is induced by the adjoint relation (1.2.1) putting $N = \mathbb{Q}_X$, $N = \mathbb{Q}_X$, $\mathbb{D}f^* = f_!\mathbb{Q}_Y$, and the Gysin morphism

$$f_\mathbb{D} : a_X_!\mathbb{Q}_X \to a_Y_!\mathbb{Q}_Y$$

by the dual argument. Note that $f_* = f_1$ if f proper, and $\mathbb{D}_X = \mathbb{Q}_X d_X[2d_X]$ if X smooth, where $d_X = \dim X$. In particular we get the usual Gysin morphism if X, Y are smooth and proper.

The main result of [55, §4] (cf. also [33-4]) is that the above theory of \mathbb{Q}-complexes underlies the theory of mixed Hodge Modules, i.e.

1.3. Theorem. For each X we have $\mathbb{M}(X)$ the abelian category of mixed Hodge Modules with the functor

$$\text{rat} : \mathbb{D}\mathbb{M}(X) \to \mathbb{D}_0^!(\mathbb{Q}_X)$$

which associates their underlying \mathbb{Q}-complexes to mixed Hodge Modules, such that $\text{rat}(\mathbb{M}(X)) \subset \text{Perv}(\mathbb{Q}_X)$, i.e.

rat\mathbb{H}^nrat, (cf. [BBD] for the definition of Perv(\mathbb{Q}_X) and \mathbb{P}_H). Moreover the functors $f^*, f_!, f^!, f^!$, $\mathbb{D}_!$, Φ_E, ψ_E, $\mathbb{D}_!$ are naturally lifted to the functors of $\mathbb{D}\mathbb{M}(X)$, i.e. they are compatible with the corresponding functors on the underlying \mathbb{Q}-complexes via the functor rat.

As to the relation with Deligne's mixed Hodge structure we have

1.4. Theorem. $\mathbb{M}(pt)$ is the category of polarizable \mathbb{Q}-

mixed Hodge structures.

In particular we have uniquely $\mathbb{Q}^H \in \mathbb{M}(pt)$ such that $\text{rat}(\mathbb{Q}) = \mathbb{Q}$ and \mathbb{Q}^H is of type $(0, 0)$. Put $\mathbb{Q}_H = \mathbb{Q}^H$. Then the same argument as in 1.2 applies replacing $D_0^!(\mathbb{Q}_X)$, \mathbb{Q}_X, etc. by $\mathbb{D}\mathbb{M}(X)$, \mathbb{Q}^H, etc. In particular we get the mixed Hodge structure on the cohomology groups, etc. with the restriction and Gysin morphisms in the category of mixed Hodge structures (or Modules). Here we have proved a little bit stronger result, because $(a_X)_*\mathbb{Q}^H_X$, etc. are complexes of mixed Hodge structures (compare to [B1]). We have also the multiplicative structure on $(a_X)_*\mathbb{Q}^H_X$ by the morphism in $\mathbb{D}\mathbb{M}(pt)$:

$$(a_X)_*\mathbb{Q}^H_X \otimes (a_X)_!\mathbb{Q}^H_X = (a_X)_*\mathbb{Q}^H_X \otimes (a_X)_!\mathbb{Q}^H_X$$

because $\mathbb{Q}_X \otimes \mathbb{Q}_X = \mathbb{Q}_X \otimes \mathbb{Q}_X$, where $\Delta : X \to X \times X$ is the diagonal embedding.

As suggested by the terminology 'mixed' (cf. [BBD]), we have the following

1.5. Proposition. Each $M \in \mathbb{M}(X)$ has a finite increasing filtration W in $\mathbb{M}(X)$, called the weight filtration of N, such that the functors $f^*, f_!, f^!, f^!$, $\mathbb{D}_!$, Φ_E, ψ_E, $\mathbb{D}_!$ are exact.

1.6. Definition. $M \in \mathbb{D}\mathbb{M}(X)$ is mixed of weight $\leq n$ (resp. $\geq n$) if $\mathbb{D}_!^n M = 0$ for $i > j + n$ (resp. $i > j + n$), and pure of
a function. Here \(\phi_g \) is the unipotent monodromy part of \(\Phi_g \) (cf. [D3] for the definition of vanishing cycle functors \(\Phi_g \)). As to the direct images and the pull-backs we have the adjoint relations (cf. [V2]):

\[
\text{Hom}(r^*M, N) = \text{Hom}(M, r_!N) \quad \text{and} \quad \text{Hom}(f^*M, N) = \text{Hom}(M, f^!N)
\]

and \(D^2 = \text{id}, Df^* = f_! \). Let \(Z \) be a closed subvariety of \(X \), and \(i : Z \to X \) and \(a_Z : X \to pt \) the natural morphisms so that \(a_Z^* = a_Z \circ \alpha \) and \(a_Z^! = a_Z^* \circ Rf_! \). Then \(H^i(Z, G) \), \(H^j(X, G) \), and \(H^i_j(X, G) \) are respectively the cohomologies

\[
(a_Z^*a_Z)^i_B \quad \text{and} \quad (a_Z^!a_Z)^i_B
\]

Moreover the restriction morphism

\[
r^* : a_Z^*a_Z^i_B \quad \text{and} \quad r^! : (a_Z^*a_Z)^i_B
\]

is induced by the adjoint relation (1.2.1) putting \(N = a_Z^*a_Z^i_B \), \(N = a_Z^!a_Z^i_B \), and the Gysin morphism

\[
f_Z : a_Z^*a_Z^i_B \quad \text{and} \quad f_Z : (a_Z^*a_Z)^i_B
\]

by the dual argument. Note that \(f_Z = f_! \) if \(f \) proper, and \(D_Z^*a_Z^*a_Z^i_B = (a_Z^!a_Z)D_Z^i_B \) if \(X \) smooth, where \(D_Z \) is the dual. In particular we get the usual Gysin morphism if \(X, Y \) are smooth and proper.

The main result of [S5, §4] (cf. also [33-4]) is that the above theory of \(\mathbb{Q} \)-complexes underlies the theory of mixed Hodge Modules, i.e.

\[\text{rat} : D^b\text{MHM}(X) \to D^b_R\mathcal{Q}_X\]

which associates their underlying \(\mathbb{Q} \)-complexes to mixed Hodge Modules, such that \(\text{rat}(\text{MHM}(X)) \subset \text{Perv}(\mathbb{Q}) \), i.e.

\[\text{rat}_! : D^b\text{MHM}(X) \to D^b_R\mathcal{Q}_X\]

which associates their underlying \(\mathbb{Q} \)-complexes to mixed Hodge Modules, such that \(\text{rat}_!(\text{MHM}(X)) \subset \text{Perv}(\mathbb{Q}) \), i.e.

\[\text{rat}_! : D^b\text{MHM}(X) \to D^b_R\mathcal{Q}_X\]

and \(D^2 = \text{id}, Df^*_\mathfrak{m} = f_! \). Let \(Z \) be a closed subvariety of \(X \), and \(i : Z \to X \) and \(a_Z : X \to pt \) the natural morphisms so that \(a_Z^* = a_Z \circ \alpha \) and \(a_Z^! = a_Z^* \circ Rf_! \). Then \(H^i(Z, G) \), \(H^j(X, G) \), and \(H^i_j(X, G) \) are respectively the cohomologies

\[
(a_Z^*a_Z)^i_B \quad \text{and} \quad (a_Z^!a_Z)^i_B
\]

Moreover the restriction morphism

\[
r^* : a_Z^*a_Z^i_B \quad \text{and} \quad r^! : (a_Z^*a_Z)^i_B
\]

is induced by the adjoint relation (1.2.1) putting \(N = a_Z^*a_Z^i_B \), \(N = a_Z^!a_Z^i_B \), and the Gysin morphism

\[
f_Z : a_Z^*a_Z^i_B \quad \text{and} \quad f_Z : (a_Z^*a_Z)^i_B
\]

by the dual argument. Note that \(f_Z = f_! \) if \(f \) proper, and \(D_Z^*a_Z^*a_Z^i_B = (a_Z^!a_Z)D_Z^i_B \) if \(X \) smooth, where \(D_Z \) is the dual. In particular we get the usual Gysin morphism if \(X, Y \) are smooth and proper.

The main result of [S5, §4] (cf. also [33-4]) is that the above theory of \(\mathbb{Q} \)-complexes underlies the theory of mixed Hodge Modules, i.e.

1.3. Theorem. For each \(X \) we have \(\text{MHM}(X) \) the abelian category of mixed Hodge Modules with the functor

\[\text{rat} : D^b\text{MHM}(X) \to D^b_R\mathcal{Q}_X\]

which associates their underlying \(\mathbb{Q} \)-complexes to mixed Hodge Modules, such that \(\text{rat}(\text{MHM}(X)) \subset \text{Perv}(\mathbb{Q}) \), i.e.

\[\text{rat}_! : D^b\text{MHM}(X) \to D^b_R\mathcal{Q}_X\]

which associates their underlying \(\mathbb{Q} \)-complexes to mixed Hodge Modules, such that \(\text{rat}_!(\text{MHM}(X)) \subset \text{Perv}(\mathbb{Q}) \), i.e.

\[\text{rat}_! : D^b\text{MHM}(X) \to D^b_R\mathcal{Q}_X\]
weight n if $G^W_{2^M} = 0$ for $i \neq j \neq n$.

The followings are the analogy of [BBB].

1.7. Proposition. If M is of weight $\leq n$ (resp. $\geq n$), so are $f_1^* M, f_2^* M$ (resp. $f_1^* M, f_2^* M$).

1.8. Corollary. $f_1^* M$ is pure of weight n if M is pure of weight n and f is proper.

1.9. Proposition. For any $M \in \text{MHM}(X)$, $G^0_{1^M}$ is a semisimple object of $\text{MHM}(X)$.

1.10. Corollary. $\text{Ext}^1(M, N) = 0$ for M mixed of weight $\leq m$ and N of weight $\geq n$, if $m < n - 1$.

1.11. Corollary. We have a noncanonical isomorphism

$$M = @ H^0 M[-1]$$

in $D\text{MHM}(X)$,

if M is pure of weight n.

1.12. Theorem. If M is pure and f is proper, we have a noncanonical isomorphism in $D\text{MHM}(X)$:

$$f_1^* M = @ H^0 f_2^* M[-1].$$

1.13. To get the decomposition theorem of Beilinson-Bernstein-Deligne-Gabber (after taking rat), we have to explain about the intersection complexes. Assume X is irreducible (or, more generally, equidimensional). Let $f: U \to X$ be a nonsingular affine open dense subset. Then the intersection complex is defined by

$$G^W_2 = \text{Im}(j_\alpha U \to f_\alpha U[d_x]) \in \text{Perv}(\mathcal{A}_X),$$

which is independent of the choice of U, cf. [BBB]. We define $G^W_2 \in \text{MHM}(X)$ replacing \mathcal{A}_U by \mathcal{A}_0 so that

$$\text{rat}(G^W_2) = G^W_2.$$ Then G^W_2 has no subobject and no quotient object supported in $X \setminus U$. In particular it is simple and pure of weight d_x, because $G^W_2(1) \in \mathcal{A}_X$.

Substituting G^W_2 to M, we get the decomposition theorem of BBB after taking rat, and the pure Hodge structure on the intersection cohomology $\text{IH}(f_\alpha U, X, 2) = H^i(X, G^W_2)$. Note that these results are generalized to the case of intersection complexes (or cohomologies) with coefficient in polarizable variations of Hodge structures, cf. 2.3.

As to the relation between \mathcal{A}_X and G^W_2, we have the following.

1.14. Proposition. $H^0 \mathcal{A}_2 = 0 (j > d_x)$, $G^0_{1^M} \mathcal{A}_2 = 0 (j > d_x)$ and $G^0_{d_x} \mathcal{A}_2 = G^W_2$.

In particular we get the (quotient) morphism

$$(1.14.1) \quad \mathcal{A}_X \to H^0 \mathcal{A}_2 \to G^0_{d_x} \mathcal{A}_2 \to G^W_2 \subset D\text{MHM}(X)$$

inducing the identity on U. (This morphism is unique.)

1.15. Let $1 \in X$ be a closed irreducible subvariety. We have a natural morphism in $D\text{MHM}(X)$:

$$\mathcal{A}_2 \to \mathcal{A}_2 \to 1 \cap G^W_2[-2d_x].$$

Composing this with its dual, we get the cycle class of 2:

$$c_2 \in \text{Hom}(\mathcal{A}_X, D\mathcal{A}_2[-2d_x])$$

$$= \text{Hom}(\mathcal{A}_X, (a_x) s_{X}^{-1}(\mathcal{A}_X) [-2d_x]),$$

because $D\mathcal{A}_2 = D\mathcal{A}_2$. Note that (a_x), $s_{X}^{-1}(\mathcal{A}_X)$ corresponds to the Borel-Weil homology (cf. 1.2), and if X is smooth $c_2 \in \mathcal{A}_X \subset \mathcal{A}_X$ belongs to the \mathcal{A}-Deligne cohomology, because

$$\text{Hom}(\mathcal{A}_X, (a_x) s_{X}^{-1}(\mathcal{A}_X) [2p]) \subset H^0(X, \mathcal{A}(p)),$$

where $p = \text{codim} 2$. (The above inclusion becomes the equa-
1.7. Proposition. If M is of weight $\geq n$ (resp. $\leq n$), so are $\tau^i M$, $\tau^i N$ (resp. $\tau^i M$, $\tau^i N$).

1.8. Corollary. $f^* N$ is pure of weight n if N is pure of weight n and f is proper.

1.9. Proposition. For any $M \in \text{NMH}(X)$, $\text{Gr}_1^W M$ is a semisimple object of $\text{NMH}(X)$.

1.10. Corollary. $\text{Ext}^i(M, M) = 0$ for M mixed of weight $\leq m$ and N of weight $\geq n$, if $m+n+1$.

1.11. Corollary. We have a noncanonical isomorphism

$$M \cong H^W[-j] \quad \text{in} \quad D^b_{\text{NMH}}(X),$$

if M is pure of weight n.

1.12. Theorem. If M is pure and f is proper, we have a noncanonical isomorphism in $D^b_{\text{NMH}}(X)$:

$$f^* N = H^W[-j].$$

1.13. To get the decomposition theorem of Beilinson-Bernstein-Deligne-Gabber (after taking rat), we have to explain about the intersection complexes. Assume X is irreducible (or, more generally, equidimensional). Let $j: U \to X$ be a non-singular affine open dense subset. Then the intersection complex is defined by

$$\text{IC}_X \cong \text{Im}(j_* \mathcal{F}_{j X} \otimes j_* \mathcal{G}_{j X} \to j_* \mathcal{G}_{j X}).$$

which is independent of the choice of U, cf. [BBBD]. We define $\text{IC}_X \otimes \mathcal{F} \in \text{NMH}(X)$ replacing \mathcal{F}_X by \mathcal{F} so that

$$\text{rat}(\text{IC}_X \otimes \mathcal{F}) = \text{IC}_X \otimes \mathcal{F}.$$ Then $\text{IC}_X \otimes \mathcal{F}$ has no subobject and no quotient object supported in $X \setminus U$. In particular it is simple and pure of weight d_X because so is $H^W(d_X)$.

Substituting $\text{IC}_X \otimes \mathcal{F}$ to M, we get the decomposition theorem of BBBD after taking rat, and the pure Hodge structure on the intersection cohomology $H^W(X, \mathcal{F}) = H^W(X, \text{IC}_X \otimes \mathcal{F})$. Note that these results are generalized to the case of intersection complexes (or cohomologies) with coefficient in polarizable variations of Hodge structures, cf. 2.3.

As to the relation between $\mathcal{F}_X \otimes \mathcal{F}_X$ and $\text{IC}_X \otimes \mathcal{F}_X$, we have the following

1.14. Proposition. $H^W \mathcal{F}_X = 0 (j > d_X)$, $\text{Gr}_1^W \mathcal{F}_X = 0 (j > d_X)$ and $\text{Gr}_1^W \mathcal{F}_X = \text{IC}_X \otimes \mathcal{F}_X$.

In particular we get the (quotient) morphism

$$(1.14.1) \quad \mathcal{F}_X \otimes \mathcal{F}_X \to H^W \mathcal{F}_X \to \text{IC}_X \otimes \mathcal{F}_X \text{ in } D^b_{\text{NMH}}(X)$$

inducing the identity on U. (This morphism is unique.)

1.15. Let $i: Z \to X$ be a closed irreducible subvariety. We have a natural morphism in $D^b_{\text{NMH}}(X)$:

$$\mathcal{F}_X \otimes i_* \mathcal{G}_{i Z} \otimes 1. \text{IC}_X \otimes \mathcal{F}_{i Z}.$$ Composing this with its dual, we get the cycle class of Z:

$$c^Z \in \text{Hom}(\mathcal{F}_X \otimes \mathcal{F}_X \otimes 1. \text{IC}_X \otimes \mathcal{F}_{i Z}, \mathcal{F}_X \otimes \mathcal{F}_X \otimes 1. \text{IC}_X \otimes \mathcal{F}_{i Z}).$$

because $D \text{IC}_X \otimes \mathcal{F}_X \otimes \mathcal{F}_X$. Note that $(a_X)_* H^W \mathcal{F}_X$ corresponds to the Borel-Moore homology (cf. 1.2), and if X is smooth $c^Z \in \mathcal{F}_X \otimes \mathcal{F}_X$ belongs to the \mathcal{F}-Borel-Moore cohomology, because

$$\text{Hom}(\mathcal{F}_X \otimes \mathcal{F}_X \otimes \mathcal{F}_{i Z}, \mathcal{F}_X \otimes \mathcal{F}_X \otimes \mathcal{F}_{i Z}) \subset H^W(X, \mathcal{F}_{i Z}).$$

where $p = \text{codim} Z$. (The above inclusion becomes the equal-
ity, if \(X \) is smooth and proper.) Here \((n)\) is the Tate twist for \(n \in \mathbb{Z} \), and defined, for example, by \(\mathbb{Q}^n = \mathbb{Q}^{n+1}(-d) \), where \(\mathbb{Q}^n \) is the mixed Hodge structure of type \((-n,-n)\), cf. [D1]. We can show that the above construction induces the cycle map

\[
CH_0(X) \otimes \mathbb{Q} \cong \text{Hom}((\mathbb{Q}^d)_{\overline{X}}, (\Delta_X)^{-1}(\mathbb{Q})_{\overline{X}})^{\mathbb{Z}}(-d)[-2d]),
\]

and if \(X \) is smooth and proper, it induces Griffiths' Abel-Jacobi map tensored by \(\mathbb{Q} \).

1.16. Remark. Let \(X \) be a smooth and proper variety over \(E \). Then we have an exact sequence (choosing \(1 = \sqrt{-1} \)):

\[
0 \to J^p(X, \mathbb{Q}(p)) \to H^{2p}(X, \mathbb{Q}) \to 0
\]

where \(J^p(X, \mathbb{Q}) = H^{2p-1}(X, \mathbb{Q}) \otimes H^{2p-1}(X, \mathbb{Q}) \)

\[
H^{2p}(X, \mathbb{Q}) = p_{H^{2p}}(X, \mathbb{Q}) \otimes H^{2p}(X, \mathbb{Q}).
\]

Let \(f: X \to S = \mathbb{P}^1 \) be a Lefschetz pencil, and put \(S' = S \setminus f(S) \) so that \(f : X' \to S' \) the restriction of \(f \) over \(S' \) is smooth. Then we have

\[
0 \to J^p(X, \mathbb{Q}(p)) \to H^{2p}(X, \mathbb{Q}(p)) \to 0
\]

where \(X_{\ell} = f^{-1}(t) \) for \(t \neq 0 \). For \(x \in H^2(X, \mathbb{Q}) \) we choose a lift \(\xi_x \) of \(x \) in \(H_{\overline{X}}^2(X, \mathbb{Q}(p)) \). Restricting \(\xi_x \) to \(X_{\ell} \), we get \(\xi_x \in H^2(X_{\ell}, \mathbb{Q}(p)) \), and it belongs to \(J^p(X, \mathbb{Q}) \) if \(\xi_x \) is zero in \(H^2(X, \mathbb{Q}(p)) \). In this case \(\xi_x \) determines the normal function with value in \(J^p(X, \mathbb{Q}) \) and we can show that they give an element of \(\text{Ext}^1((\mathbb{Q}^d)_{\overline{X}}, (\mathbb{Q}^{2p-1})_{\overline{X}}) \), where \(\text{Ext}^1 \) is taken in \(\text{MM}(S') \); in particular, the corresponding variation of mixed Hodge structure is admissible in the sense of Steenbrink-Zucker [SZ]. Here note that \(\xi_x \) is not uniquely determined by \(x \), but depend on the choice of lift \(\xi_x \) (e.g. if \(2p = \dim X \) and \(H^{2p-1}(X) \neq 0 \)). Therefore to prove the Hodge conjecture, we must choose a good lift; otherwise \(\xi_x \) would not belong to the image of the Abel-Jacobi map.

Note that for the proof of the Hodge conjecture we can restrict to a non-empty open subset (i.e., it is enough to construct a cycle in \(X' \), because the Hodge conjecture is equivalent to the following:

1.16.1) For a smooth proper variety \(X \) and \(\xi \in H^{2p}(X, \mathbb{Q}) \), there exists a nonempty Zariski open subset \(U \) such that the restriction of \(\xi \) to \(U \) is zero.

In particular we may assume \(U = X \) is projective using [D1].

1.17. Remark. For \(1: \mathbb{Z} \to X \) a closed immersion of varieties we define:

\[
\nu^\ast_{H^2}(X, \mathbb{Q}(n)) = \text{Hom}(\mathbb{Q}, \mathbb{Q}) \otimes \rho_{X}^{-1}(H^2(X, \mathbb{Q}(n)[-j])
\]

\[
\nu_{\ast}(X, \mathbb{Q}(n)) = \text{Hom}(\mathbb{Q}, \mathbb{Q}) \otimes \rho_{X}^{-1}(H^2(X, \mathbb{Q}(n)[-j]).
\]

Then they form a Poincare duality theory with support in the sense of [BO]. In fact, (1.3.1)(Cap product with supports)

\[
\nu^\ast_{H^2}(X, \mathbb{Q}(m)) \otimes \nu_{\ast}(X, \mathbb{Q}(n)) \to \nu^\ast_{H^2}(X, \mathbb{Q}(m-n))
\]

is given by the composition of \(u \) and \(1 \) for \(u \in H^2(X, \mathbb{Q}(n)) \) and \(\nu_{\ast}(X, \mathbb{Q}(m)) \), and (1.3.4)(Fundamental class) is constructed in 1.15, so that (1.3.5)(Poincare duality) becomes trivial, because \(\eta_x \) is the natural isomorphism \(\mathbb{Q} \otimes \delta_{H^2}(X, \mathbb{Q}) \) if \(X \) is smooth of dimension \(d \). Moreover the well-definedness of the cycle map in 1.15 implies (1.5)(Principal triviality).

1.18. The following application is suggested by Durfee. Assume \(X \) is analytically irreducible (or equidimensional) at \(x \in X \); or put \(f: X = X \setminus \{x\} \to X \) and \(f(x) = X \).

By restricting \(X \) to an analytic neighborhood of \((x) \), we may assume \(X \times I \times L \) (topologically) by the cone theorem, where \(I \) is an open interval and \(L \) is the neighborhood boundary \(\{x\} \). Therefore \(IH(L) \) the intersection cohomology of \(L \) is given by the cohomology of

\[
1^\ast_{H^2}(X, \mathbb{Q}) = C(1)_{\ast H^2} \to 1^\ast_{H^2}(\mathbb{Q}) = \cdots.
\]
Introduction to Mixed Hodge Modules

1.16. Remark. Let \(X \) be a smooth and proper variety over \(\mathbb{E} \). Then we have an exact sequence (choosing \(\sqrt{-1} \)):

\[0 \to J^P(X, \mathbb{G}) \otimes \mathbb{C} = H^P(X, \mathbb{Q}) \to H^P(X, \mathbb{Q}) \to 0 \]

where \(J^P(X, \mathbb{Q}) = H^{p-1}(X, \mathbb{Q}) \otimes H^{p-1}(X, \mathbb{Q}) \).

\(\mathbb{G} \) is the group of rational numbers.

Let \(f: X \to S = \mathbb{P}^1 \) be a Lefschetz pencil, and put \(S' = S \setminus f(S(<f)) \) so that \(f^*: X' \to S' \) the restriction of \(f \) over \(S' \) is smooth. Then we have

\[0 \to J^P(X', \mathbb{Q}) \otimes \mathbb{C} = H^P(X', \mathbb{Q}) \to H^P(X, \mathbb{Q}) \to 0 \]

where \(X' = f^*(S) \) for \(\mathbb{C} \in H^P(X, \mathbb{Q}) \).

Restricting \(\mathbb{C} \) to \(X' \), we get \(\mathbb{C}' \in H^P(X', \mathbb{Q}) \), and it belongs to \(J^P(X', \mathbb{Q}) \) if \(\mathbb{C} \) belongs to \(H^P(X, \mathbb{Q}) \) in the case \(\mathbb{C} \) is zero.

In this case \(\mathbb{C} \) determines the normal function with value in \(J^P(X', \mathbb{Q}) \) and we can show that they give an element of \(Ext^1_{\mathbb{C}^\mathbb{C}}(\mathbb{Q}^\mathbb{C}, H^P(X', \mathbb{Q}^\mathbb{C})) \), where \(Ext^1_{\mathbb{C}^\mathbb{C}} \) is taken in \(\mathbb{C} \)-modules; in particular, the corresponding variation of mixed Hodge structure is admissible in the sense of Steenbrink-Zucker (33). Here note that \(\mathbb{C} \) is not uniquely determined by \(\mathbb{C} \), but depend on the choice of lift \(\mathbb{C}^\mathbb{C} \) (e.g., if \(2p + d \times 1 \mathbb{C} \) and \(H^P(X, \mathbb{Q}) \neq 0 \)). Therefore to prove the Hodge conjecture, we have to choose a good lift; otherwise \(\mathbb{C} \) would not belong to the image of the Abel-Jacobi map.

Note that for the proof of the Hodge conjecture we can restrict to a non-empty open subset (i.e., it is enough to construct a cycle in \(X' \)), because the Hodge conjecture is equivalent to the following:

(1.16.1) For a smooth proper variety \(X \) and \(\mathbb{C} \in H^P(X, \mathbb{Q}) \), there exists a nonempty Zariski open subset \(U \) such that the restriction of \(\mathbb{C} \) to \(U \) is zero.

In particular, we may assume \(X \) is projective using [D1].

1.17. Remark. For \(1 : \mathbb{Z} \to 1 \) a closed immersion of varieties we define:

\[1^{H^P}(X, \mathbb{Q}(n)) = Hom(\mathbb{Z}, \mathbb{C}) \otimes a_1^{H^P}(\mathbb{Q}(n)(1)) \]

\[1^{H^P}(X, \mathbb{Q}(n)) = Hom(\mathbb{Z}, \mathbb{C}) \otimes a_1^{H^P}(\mathbb{Q}(n)(-1)) \]

Then they form a Poincare duality theory with support in the sense of [BO]. In fact, (1.3.1)(Cap product with supports)

\[1^{H^P}(X, \mathbb{Q}(m)) \otimes 1^{H^P}(\mathbb{Q}(n)) \]

is given by the composition of \(u \) and \(1^y \) for \(u \in H^P(X, \mathbb{Q}(n)) \) and \(v \in H^P(X, \mathbb{Q}(m)) \), and (1.3.4)(Fundamental class) is constructed in 1.15, so that (1.3.5)(Poincare duality) becomes trivial, because \(a_1^\mathbb{C} \) is the natural isomorphism \(\mathbb{C} \to a_1^{H^P}(\mathbb{Q}(d-1)) \) if \(X \) is smooth of dimension \(d \).

Moreover the well-definedness of the cycle map in 1.15 implies (1.5)(Principal triviality).

1.18. The following application is suggested by Pappas. Assume \(X \) is analytically irreducible (or equidimensional) at \(x \in X \), and put \(j : U = X \setminus \{x\} \to X \) and \(i : \{x\} \to X \).

By restricting \(X \) to an analytic neighborhood of \(\{x\} \), we may assume \(U \to X \) topologically by the cone theorem, where \(I \) is an open interval and \(L \) is the neighborhood boundary \(\partial X \). Therefore IH(L) the intersection cohomology of \(L \) is given by the cohomology of

\[1^*j_*\mathbb{L}^H \mathbb{Q} = C(j_1^*\mathbb{L}^H \mathbb{Q}) \to j_*\mathbb{L}^H \mathbb{Q} \].

up to the shift of complex by \(n - d_X \). In particular we get the mixed Hodge structure on \(IH(L) \) and the duality of mixed Hodge structure

\[
IH^j(L) @ IH^{2n-1-j}(L) \to \mathbb{Q}(-n),
\]

because \(\text{dim}_j = j \cdot \text{dim} \) and \(D((\mathcal{O}_X^n)^{\mathcal{H}}) = IC_{\mathcal{O}_X^n}(n) \). We have also the estimate of weight:

\[
IH^j(L) \text{ is of weight } j \text{ for } j < n \text{ and } > j \text{ for } j \geq n,
\]

because the assertion for \(j < n \) follows from the isomorphism

\[
\mathfrak{g}^j \mathcal{O}_X^n \mathcal{H} = \mathfrak{g}^j \mathcal{O}_X^n \mathcal{H}
\]

and we use the duality for \(j \geq n \).

1.19. Let \(g \) be a non-zero divisor of \(\Gamma(X, \mathcal{O}_X) \), and put \(\iota : Y = \mathcal{O}_X^n(0) \) red \(X, n = \text{dim} X \) and \(M = \mathcal{O}_X^n \mathcal{H} \) (or more generally, \(M \) is pure of weight \(n \) and has no subobject supported in \(Y \)). Then we have an exact sequence in \(\mathbb{M}(\mathcal{Y}) \):

\[
0 \to \mathfrak{g}^j \mathcal{O}_X^n \mathcal{H} \to \mathfrak{g}^j \mathcal{O}_X^n \mathcal{H}
\]

The weight filtration \(W \) of \(\mathfrak{g}^j \mathcal{O}_X^n \mathcal{H} \) is the monodromy filtration shifted by \(n-1 \) and \(n \). Let \(P_X^j \) denote the primitive part of \(\mathfrak{g}^j \mathcal{O}_X^n \mathcal{H} \). Then we have

\[
P_X^j \mathfrak{g}^j \mathcal{O}_X^n \mathcal{H} = P_X^j \mathfrak{g}^j \mathcal{O}_X^n \mathcal{H}
\]

and

\[
P_X^j \mathfrak{g}^j \mathcal{O}_X^n \mathcal{H} = P_X^j \mathfrak{g}^j \mathcal{O}_X^n \mathcal{H}
\]

For \(x \in Y \) put \(\iota_x : (x) \to Y \). If \(X \) is smooth and \(M = \mathcal{O}_X^n(0) \), we have

\[
\mathfrak{g}^j \mathcal{O}_X^n \mathcal{H} \to \mathfrak{g}^j \mathcal{O}_X^n \mathcal{H}
\]

and \(\mathfrak{g}^j \mathcal{O}_X^n \mathcal{H} \) gives the reduced cohomologies of the Milnor fiber around \(x \), where \(\mathfrak{g}^j \mathcal{O}_X^n \mathcal{H} = \mathfrak{g}^j \mathcal{O}_X^n \mathcal{H} \). Note that \(\mathfrak{g}^j \mathcal{O}_X^n \mathcal{H} \) is calculated by \(g^j \mathcal{O}_X^n \mathcal{H} \) using (1.19.2) and (1).
up to the shift of complex by $n = \xi$. In particular we get the mixed Hodge structure on $IH(L)$ and the duality of mixed Hodge structure

$$IH^j(L) \otimes \Omega^nz-j(L) = \mathbb{Q}(-n),$$

because $d_j = j_\ast D$ and $D(JG^n) = JG^n(n)$. We have also the estimate of weight:

$$IH^j(L) \text{ is of weight } \leq j \text{ for } j < n \text{ and } > j \text{ for } j \geq n,$$

because the assertion for $j < n$ follows from the isomorphism

$$i_{\mathcal{Q}}^\ast J_\ast \Omega^nz = 1_{\mathcal{Q}}^\ast \Omega^nz$$

and we use the duality for $j \geq n$.

1.19. Let g be a non zero divisor of $\Gamma(X, \mathcal{Q})$, and put $1 : Y*P^7(0) \text{red} / X, n = \dim X$ and $M = JG^x_\mathcal{Q}$ (or more generally, M is pure of weight n and has no subobject supported in Y). Then we have an exact sequence in $\text{MMH}(Y)$:

$$0 \rightarrow 1_{x}^\ast M[-1] \rightarrow \psi_\mathcal{Q}M \otimes \psi_\mathcal{Q}M \rightarrow 0$$

The weight filtration W of $\psi_\mathcal{Q}M$ and $\psi_\mathcal{Q}M$ are the monodromy filtration shifted by $n-1$ and n. Let $F_\mathcal{Q}$ denote the primitive part of $Gr_j^{\mathcal{Q}}$. Then we have

$$F^{\mathcal{Q}}W^{\mathcal{Q}} = P_\mathcal{Q}W^{\mathcal{Q}} \otimes \psi_\mathcal{Q}M \text{ for } j < n$$

$$F^{\mathcal{Q}}W^{\mathcal{Q}} = P_\mathcal{Q}W^{\mathcal{Q}} \otimes \psi_\mathcal{Q}M \text{ for } j \geq n$$

For $x \in Y$ put $1_x : (x) \rightarrow Y$. If X is smooth and $M = \mathcal{Q}_X(n)$, we have

$$1_x^\ast M[-1] = \mathcal{Q}_x[-n]$$

and $1_x^\ast M$ is the reduced cohomology of the Milnor fiber around x, where $\mathcal{Q}_x = \mathcal{Q}_x \otimes \mathcal{Q}_x$. Note that

$$Gr_j^x \mathcal{Q}_x$$

is calculated by \mathcal{Q}_X using (1.1.2) and 1.14 (i.e. (1.19.4))

$$Gr_n^X \mathcal{Q}_X \otimes \mathcal{Q}_X(n-1) = \mathcal{Q}_X[-n]$$. If X and Y have an isolated singular point at x and $M = \mathcal{Q}_X^q$, we have a natural inclusion of spectral sequences in $\text{MMH}(pt)$:

$$E^{q}_{k,j+k} = H^q_{x} \otimes \mathcal{Q}_{x}[-k] \rightarrow H^q_{x} \otimes \mathcal{Q}_{x}[-k]$$

and

$$E^{q}_{k,j+k} = H^q_{x} \otimes \mathcal{Q}_{x}[-k] \rightarrow H^q_{x} \otimes \mathcal{Q}_{x}[-k]$$

By assumption $E^{q}_{k,j+k} = 0$ except for $j = 0$ and $j < 0, k = n-1$, and we have for $j \neq 0$:

$$H^q_{x} \otimes \mathcal{Q}_{x}[-n-1] \rightarrow H^q_{x} \otimes \mathcal{Q}_{x}[-n-1]$$

In particular $d_\mathcal{Q} : E^{pq} + p^{pq} + q \rightarrow 1$ is zero except for $(p,q) = (1,n,n-2)$, and the image $\Gamma_\mathcal{Q} \subset E^{1-n+n-1-r}$ of $d_\mathcal{Q}$ is independent of the two spectral sequences. Then we have

$$H^q_{x} \otimes \mathcal{Q}_{x}[-n-1] = H^q_{x} \otimes \mathcal{Q}_{x}[-n-1]$$

where the inclusion becomes an isomorphism for $j < -1$, and Gr_{n-1-r} of the cokernel of the inclusion for $j = -1$ is $I_\mathcal{Q}$ for $r > 0$. We have also

$$P_\mathcal{Q}W^{\mathcal{Q}} \otimes \mathcal{Q}_X(n-1) \rightarrow \mathcal{Q}_X[-n-1]$$

$$P_\mathcal{Q}W^{\mathcal{Q}} \otimes \mathcal{Q}_X(n-1) \rightarrow \mathcal{Q}_X[-n-1]$$

$$P_\mathcal{Q}W^{\mathcal{Q}} \otimes \mathcal{Q}_X(n-1) \rightarrow \mathcal{Q}_X[-n-1]$$

(same for $\mathcal{Q}_{x}[-n-1]$, $\mathcal{Q}_{x}[-n-1]$), where the induced filtration \mathcal{W} on $H^q_{x} \otimes \mathcal{Q}_{x}$ (or $H^q_{x} \otimes \mathcal{Q}_{x}$) is the weight filtration (this is not true for \mathcal{W} with $j = 0$). As a corollary, we have a direct sum decomposition $Gr^x_{\mathcal{Q}} = L \otimes \mathcal{Q}_x[-k]$. As a graded $\mathcal{Q}[n]$-module such that L (resp. $\mathcal{Q}_x[-k]$ is symmetric with center $n-1$ (resp. n) and

$$P^{\mathcal{Q}}_\mathcal{Q}W^{\mathcal{Q}} \otimes \mathcal{Q}_X(n-1+k) \rightarrow \mathcal{Q}_X[-n-1-k]$$

for $k > 0$

$$P^{\mathcal{Q}}_\mathcal{Q}W^{\mathcal{Q}} \otimes \mathcal{Q}_X(n-1+k) \rightarrow \mathcal{Q}_X[-n-1-k]$$

for $k > 0$

using (1.1.2), cf. [S1, 24]. As for $\mathcal{Q}_x[-k]$, we have
(1.19.8) $Gr^\bullet_{\psi_1} M = \bigoplus_{\mathfrak{X}} \mathbb{C}^1 \otimes \mathbb{C}^1 \otimes \mathbb{C}^1 \otimes \mathbb{C}^1$

because supp $\psi_1 \subset \mathbb{C}^1 \otimes \mathbb{C}^1$. Note that if X is furthermore smooth and $n \geq 1$, $H^1 X[-1] = 0$ for $j \geq 1$ and we have $L = 0$ and E as well-known. To get the information about ψ_1, we can also replace X by $(g = t^m) \otimes X \otimes \mathbb{C}$, where m is a positive integer such that the m-th power of the monodromy becomes unipotent. Then (1.19.7) is compatible with the join theorem of mixed Hodge structures on the Milnor cohomologies.

Now we assume X is smooth, and put $Z = (\text{Sing} g)_{\text{red}}$, $Z' = \mathbb{C}^1 \otimes \mathbb{C}$ (same for X, Y') and $M = \mathbb{C}^1 \otimes \mathbb{C}$.

We assume that g is locally topologically trivial along Z' and Z is smooth. For $z \in Z'$, we assume:

(1.19.9) $H^2(g_1)_{\psi_1} M = 0$, where $d = d_z$.

(1.19.10) the monodromy of $H^2(g_1)_{\psi_1} M$ is semi-simple.

Then by (1.19.9) $\mathbb{C}^1[n-1] = \mathbb{C}^1 \otimes \mathbb{C}$, i.e. supp $\mathbb{C}^1 \otimes \mathbb{C}$, and for the second spectral sequence in (1.19.3), $E^{1,0} = 0$ except for $j \neq 0$ and $j < 0$, $k = n-1$. Therefore as for $\mathbb{C}^1 \otimes \mathbb{C}$ we have the spectral sequence as in (1.19.3) with the vanishing of E^2, term as above by (1.19.10), but the calculation of $H^2(g_1)_{\psi_1} M$ is not so easy. If $d = 1$, $H^1 X \otimes H^1 Y_1$ is not so easy. If $d = 1$, $H^0 (\mathbb{C}^1 \otimes \mathbb{C})_{\mathbb{C}}$ is the invariant part by the monodromy along each irreducible component of Z_1, where $j : Y_1 \to Y$. But in general we have to calculate the cohomology of the local fundamental group of (Z, X).

1.20. For $M \in D^b \text{MHM}(X)$ and $f : X = Y$, $g : Y = Z$, we have the (perverse) Leray spectral sequence in $\text{MHM}(Z)$:

(1.20.1) $E^2 = H^p(g_1)_{\psi_1} M \to H^p(f_1)_{\psi_1} M$

which degenerates at E_2 if f is proper and M is pure.

1.21. For an application to the representation theory, see [T].

§2. Naturality.

2.1. Assume X smooth, and let $\text{MHM}(X)_g$ be the full subcategory of $\text{MHM}(X)$ consisting of smooth mixed Hodge Modules, where $K \in \text{MHM}(X)$ is called smooth iff rat(K) is a local system. Let $\text{VMHS}(X)_{\text{ad}}$ be the category of admissible variation of mixed Hodge structures, where a variation of mixed Hodge structure is called admissible if it is graded polarizable and for any morphism $\varphi : S \otimes X$ with $\text{dim} S = 1$, its pull-back by φ satisfies the conditions of [S2], cf. [K2]. Then we have the equivalence of categories:

2.2. Theorem. $\text{MHM}(X)_g \cong \text{VMHS}(X)_{\text{ad}}$.

This implies that a polarizable variation of Hodge structure of weight n is a smooth mixed Hodge Module and pure of weight $n + \text{dim} X$. In particular, the polarizable Hodge Modules are the pure Hodge Modules by the stability by intermediate direct images $j_1 = \text{Im}(j_1) \to j_1$, and for X irreducible we have

2.3. Theorem. $\text{MHM}(X, n)^{D} = \text{VMHS}(X, n + \text{dim} X)^{D}_{\text{gen}}$.

Here the left hand side is the category of polarizable Hodge Modules of weight n with strict support X (i.e. having no subobject and no quotient object supported in a proper subvariety of X) and the right hand side is the category of polarizable variation of Hodge structures of weight $n + \text{dim} X$ defined on some nonempty smooth open subset of X, whose local monodromies are quasi-unipotent.

As a corollary of 2.2, we get a canonical mixed Hodge structure on $\text{H}(X, L)$ if L underlies an admissible variation of mixed Hodge structure. (This result can be generalized to the analytic case if X has a Kähler compatification, using [KK].)

2.4. Let g be a function on X. Put $Y = g^{-1}(0)_{\text{red}}$. Let $\text{MHM}(U, Y)_{\text{ad}}$ be the category whose objects are (M', M', u, v) where $M' \in \text{MHM}(U)$, $M' \in \text{MHM}(Y)$, $u \in \text{Hom}(\psi_1, M')$, $v \in \text{Hom}(M', \psi_1, M')$ such that $vu = N$.
(1.19.8) $\mathcal{R}^n_{\mathbb{C}} X_{\mathbb{C}} \cdot M = \pi_{xX}^* \mathcal{R}^n_{\mathbb{C}} X_{\mathbb{C}} \cdot M$

because $\text{supp} \, \psi_{E_{x}, \mathbb{C}}^* M \subset \{ x \}$. Note that if X is furthermore smooth and $n > 1$, $H^j_{\mathbb{C}}(M[-1]) = 0$ for $j > 1 - n$ and we have $L = 0$ and $I_{X} = \mathcal{O}_{\mathbb{C}}^{0} \cdot X$, as is well-known. To get the information about $\psi_{E_{x}, \mathbb{C}}^* M$, we can also replace X by $(g = t^m) \cdot \mathbb{C} \times \mathbb{Z}$, where m is a positive integer such that the m-th power of the monodromy becomes unipotent. Then (1.19.7) is compatible with the join theorem of mixed Hodge structure with the Milnor cohomologies.

Now we assume X is smooth, and put $Z = (\text{Sing}(g))_{\text{red}}$, $Z' = Z \times \{ x \}$ (same for X', Y') and $M = \mathcal{O}_{X_{\mathbb{C}}}^2$. We assume that g is locally topologically trivial along Z' and Z' is smooth. For $x \in Z'$, we assume:

(1.19.9) $H^{d}_{E_{x}, \mathbb{C}}(Z'_{x}) \cdot M = 0$, where $d = d_z$.

(1.19.10) the monodromy of $H^{d}_{E_{x}, \mathbb{C}}(Z'_{x}) \cdot M$ is semi-simple.

Then by (1.19.9) $\mathcal{O}_{X_{\mathbb{C}}}^2 \cdot H_{E_{x}, \mathbb{C}}(Z'_{x}) \cdot M$, i.e. $\mathcal{O}_{X_{\mathbb{C}}}^2 \cdot \mathbb{C} \times \mathbb{Z}$, and for the second spectral sequence in (1.19.3), $H_{E_{x}, \mathbb{C}}(Z'_{x}) \cdot M = 0$, except for $j \neq 0$ and $j < 0$, $k = n - 1$. Therefore as for $\psi_{E_{x}, \mathbb{C}}^* M$, the same argument as above holds. As for $\psi_{E_{x}, \mathbb{C}}^* M$ we have the spectral sequence as in (1.19.3) with the vanishing of E_{x}-term, as above by (1.19.10), but the calculation of $\mathcal{R}^n_{\mathbb{C}} X_{\mathbb{C}} \cdot M$ is not so easy. If $d = 1$, $H^{d}_{E_{x}, \mathbb{C}}(Z'_{x}) \cdot M$ is the invariant part by the monodromy along each irreducible component of Z, where $j : Y' \to Y$. But in general we have to calculate the cohomology of the local fundamental group of (Z, X).

1.20. For $M \in D^b \text{MHM}(X)$ and $f : X \to Y$, $g : Y \to Z$, we have the (perverse) Leray spectral sequence in $\text{MHM}(Z)$:

(1.20.1) $\mathcal{E}^2_{p,q} = \mathcal{H}^p_{E_{x}, \mathbb{C}} \mathcal{R}^q(f \circ g)^* M \to \mathcal{R}^q((g f)^* M)$

which degenerates at E_2 if f is proper and M is pure.

1.21. For an application to the representation theory, see [T].

§2. Nature

2.1. Assume X smooth, and let $\text{MHM}(X)$ be the full subcategory of $\text{MHM}(X)$ consisting of smooth mixed Hodge Modules, where $K \in \text{MHM}(X)$ is called smooth iff rat (K) is a local system. Let $\text{VHMS}(X)_{\text{ad}}$ be the category of admissible variation of mixed Hodge structures, where a variation of mixed Hodge structure is called admissible if it is graded polarizable and for any morphism $f : X \to Y$ with $\dim Y = 1$, its pull-back by f satisfies the conditions of $[\mathbb{C}^2]$, cf. [K2].

Then we have the equivalence of categories:

2.2. Theorem. $\text{MHM}(X) \cong \text{VHMS}(X)_{\text{ad}}$.

This implies that a polarizable variation of Hodge structure of weight n is a smooth mixed Hodge Module and pure of weight $n + \dim X$. In particular, the polarizable Hodge Modules are the pure Hodge Modules by the stability by intermediate direct images $j_{!1} : \text{MHM}(X) \cong \text{VHMS}(X, n - \dim X)_{\text{gen}}$.

2.3. Theorem. $\text{MHM}(X)_{\text{ad}} \cong \text{VHMS}(X, n - \dim X)_{\text{gen}}$.

Here the left hand side is the category of polarizable Hodge Modules of weight n with strict support X (i.e. having no subobject and no quotient object supported in a proper subvariety of X) and the right hand side is the category of polarizable variation of Hodge structures of weight $n - \dim X$ defined on some nonempty smooth open subset of X, whose local monodromies are quasi-unipotent.

As a corollary of 2.2, we get a canonical mixed Hodge structure on $H(X, L)$ if L underlying an admissible variation of mixed Hodge structure. (This result can be generalized to the analytic case if X has a Kähler compatification, using [K2].)

2.4. Let g be a function on X. Put $Y = g^{-1}(0)_{\text{red}}$. Let $\text{MHM}(U, Y)_{\text{ad}}$ be the category whose objects are $(M', M'' : u, v)$ where $M' \in \text{MHM}(U)$, $M'' \in \text{MHM}(Y)$, G such that $\nu = N$
(the logarithm of the unipotent part of the monodromy, tenses by $(2\pi i)^{-1}$). Then we have an equivalence of categories (compare to [V3]):

2.5. Theorem. \(\text{MMH}(X) \cong \text{MMH}(U,Y)_{/g_l} \).

Here we associate \((M|_U, g, M, \text{can}, \text{Var}) \) to \(M \in \text{MMH}(X) \).

Because the definition of mixed Hodge Module is Zariski local, every object of \(\text{MMH}(X) \) can be constructed by induction on the dimension of support using 2.2 and 2.5.

§3. Definition.

3.1. To explain more precisely about the statements in §2, we have to speak about the definition of mixed Hodge Modules. For simplicity we assume \(X \) is smooth. The general case can be reduced to this case using local embeddings into smooth varieties. Let \(\mathbb{M}_{\mathbb{R}}(D_{\mathbb{R}}) \) be the category of filtered \(D_{\mathbb{R}} \)-Modules \((M, F) \) such that \(M \) is regular holonomic [Bo] and \(\text{Gr}^F M \) is coherent over \(\text{Gr}^F D \). (We can also use analytic \(D_{\mathbb{R}} \)-Modules, because the final result is the same by ODA and the extendability of mixed Hodge Modules.) By [K1] we have a faithful and exact functor \(\text{DR} : \mathbb{M}_{\mathbb{R}}(D_{\mathbb{R}}) \to \text{Perv}(\mathbb{Q}) \), and we define \(\mathbb{M}_{\mathbb{R}}(D_{\mathbb{R}}) \) to be the fiber product of \(\mathbb{M}_{\mathbb{R}}(D_{\mathbb{R}}) \) and \(\text{Perv}(\mathbb{Q}) \) over \(\text{Perv}(\mathbb{Q}) \), i.e., the objects are \((M, F, \mathbb{R}) \in \mathbb{M}_{\mathbb{R}}(D_{\mathbb{R}}) \times \text{Perv}(\mathbb{Q}) \) with an isomorphism \(\alpha : \text{DR}(M) \cong D_{\mathbb{R}} X \), and the morphisms are the pairs of morphisms \(\alpha \). A filtration \(W \) of \((M, F, \mathbb{R}) \) is a pair of filtrations \(W \) on \(M \) and \(\mathbb{R} \) compatible with \(\alpha \). Let \(\mathbb{M}_{\mathbb{R}}(D_{\mathbb{R}}) \) be the category of the objects of \(\mathbb{M}_{\mathbb{R}}(D_{\mathbb{R}}) \) with a finite increasing filtration \(W \). Then \(\text{MMH}(X) \) the category of mixed Hodge Modules is a full subcategory of \(\mathbb{M}_{\mathbb{R}}(D_{\mathbb{R}}) \) and \(W \) gives the weight filtration in 1.5. For \((M, F, \mathbb{R}) \in \text{MMH}(X) \) we can show that \((M, F, \mathbb{R}) \) is an admissible variation of mixed Hodge structure, where \(L \) is the local system on \(X \) such that \(X = L_{\mathbb{A}} \) and the functor in 2.2 is induced in this way. Here we use the convention \(\text{Gr}^F = F^{p} M \) and the Griffiths transversality.

3.2. To define \(\text{MMH}(X) \), we have to define first \(\text{MMH}(X_n) \) the category of Hodge Modules of weight \(n \), cf. [81-2].

This is a full subcategory of \(\mathbb{M}_{\mathbb{R}}(D_{\mathbb{R}}) \) and satisfies:

3.2.1 \(\text{MMH}(pt, n) \) is the category of \(\mathbb{Q} \)-Hodge structures of weight \(n \).

3.2.2 If \(\text{supp} M = \{ x \} \) for \(M \in \text{MMH}(X,n) \), there exists \(\{ x \} \in \text{MMH}(pt, n) \) such that \(M = \{ x \} \), where \(x : \{ x \} \to X \).

3.2.3 If \(M \in \text{MMH}(X,n) \), \(M \) is regular and quasi-unipotent along \(\mathbb{S} \), \(\text{Gr}^0 M, \text{Gr}^1 M, \ldots, \text{Gr}^n M \in \text{HH}(U, 1) \) for any \(i \), \(\frac{\partial}{\partial t} = \text{Im} c_0 \) \(c_0 \) \(\text{Ker} \text{Var} \), for any \(c_0 \) defined on an open subset \(U \), where \(W \) is the monodromy filtration shifted by \(n-1 \) and \(n \).

Here for a closed immersion \(i : X \to Y \) of codimension \(k \) such that \(X = \{ x = 0 \} \), the direct image \(i_* (M, F) \) of a filtered \(D_{\mathbb{R}} \)-Module is defined by

\[
(i_* M) = M(i_1, \ldots, i_k, F) \text{ with } F_{p+k} M = \bigoplus_{i \geq 0} \text{Gr}^F M_{i+k} \bigoplus_{i \leq -k} 0
\]

where \(i_1, \ldots, i_k \) are vector fields such that \([i_1, i_2] = i_{12} \), cf. [Bo].

We say that \((M, F, \mathbb{R}) \in \mathbb{M}_{\mathbb{R}}(D_{\mathbb{R}}) \) is regular and quasi-unipotent along \(\mathbb{S} \), if the monodromy of \(\varphi_{\mathbb{S}(-1)} \) is quasi-unipotent and \((M, F) = \bigoplus_{a} \text{Gr}^a M \) satisfies

\[
t: F \to F = t \quad \text{for } a > 1
\]

(3.2.4)

\[
\partial_t: F = F = t \quad \text{for } a < 1
\]

(3.2.5)

where \(i : X \to X \times \mathbb{S} \) is the immersion by graph of \(g \), \(t \) is the coordinate of \(\mathbb{S} \) and \(V \) is the filtration of Malgrange-Kashiwara[K1] indexed by \(\mathbb{Q} \) such that \(t \partial_{t} \text{ is nilpotent on } \text{Gr}^0 M \). In this case we define

\[
\varphi_{\mathbb{S}}(M, F, \mathbb{R}) = (\varphi_{1 \leq a \leq 0} \text{Gr}^a V(R, F), \varphi_{\mathbb{S}}(X(-1))
\]

(3.2.5)
(the logarithm of the unipotent part of the monodromy, tensored by \((2\pi i)^{-1}\)). Then we have an equivalence of categories (compare to [V3]):

2.5. Theorem. \(\text{MHM}(X) \cong \text{MHM}(U, Y)_{\text{g}_1}\).

Here we associate \(\{N|_U, \varphi_p, \lambda\} \text{can, Var}\) to \(M \in \text{MHM}(X)\). Because the definition of mixed Hodge Module is Zariski local, every object of \(\text{MHM}(X)\) can be constructed by induction on the dimension of support using 2.2 and 2.5.

\S 3. Definition.

3.1. To explain more precisely about the statements in \S 2, we have to speak about the definition of mixed Hodge Modules. For simplicity we assume \(X\) is smooth. The general case can be reduced to this case using local embeddings into smooth varieties. Let \(\mathcal{M}_n^\lambda(D_X)\) be the category of filtered \(D_X\)-Modules \((\mathcal{M}, \varphi)\) such that \(\mathcal{M}\) is regular holonomic [Bo] and \(\varphi^p \mathcal{M}\) is coherent over \(\varphi^p D\). (We can also use analytic \(D_X\)-Modules, because the final result is the same by GAGA and the extendability of mixed Hodge Modules.) By [K1] we have a faithful and exact functor \(DR: \mathcal{M}_n^\lambda(D_X) \rightarrow \text{Perv}(\mathcal{D}_X)\), and we define \(\mathcal{M}_n^\lambda(D_X, \mathbb{Q})\) to be the fiber product of \(\mathcal{M}_n^\lambda(D_X)\) and \(\text{Perv}(\mathcal{D}_X)\), i.e., the objects are \((\mathcal{M}, \varphi, \xi) \in \mathcal{M}_n^\lambda(D_X) \times \text{Perv}(\mathcal{D}_X)\) with an isomorphism \(\xi: \mathcal{D}(\mathcal{M}) \cong \mathcal{D}(\varphi)\), and the morphisms are the pairs of morphisms compatible with \(\xi\).

A filtration \(\mathcal{W}\) of \((\mathcal{M}, \varphi, \xi)\) is a pair of filtrations \(\mathcal{W}\) on \(\mathcal{M}\) and \(\varphi\) compatible with \(\xi\). Let \(\mathcal{M}_n^\lambda(D_X, \mathbb{Q})\) be the category of the objects of \(\mathcal{M}_n^\lambda(D_X, \mathbb{Q})\) with a finite increasing filtration \(\mathcal{W}\). Then \(\text{MHM}(X)\) the category of mixed Hodge Modules is a full subcategory of \(\mathcal{M}_n^\lambda(D_X, \mathbb{Q})\) and \(\mathcal{W}\) gives the weight filtration in 1.5. For \((\mathcal{M}, \varphi, \xi) \in \text{MHM}(X)\), we can show that \((\mathcal{M}, \varphi, \xi; \mathcal{W})\) is an admissible variation of mixed Hodge structure, where \(\mathcal{W}\) is the local system on \(X\) such that \(X = \mathcal{L}[\mathcal{W}]\) and the functor in 2.2 is induced in this way. Here we use the convention \(\varphi^p = \varphi^{\mathcal{W}}\) and the Griffiths transversality follows from \(F'_{\varphi} \mathcal{M} \subset \varphi^{p+\mathcal{M}}\).

3.2. To define \(\text{MHM}(X)\), we have to define first \(\text{MHM}(X, n)\) the category of Hodge Modules of weight \(n\), cf. [Bo-2]. This is a full subcategory of \(\mathcal{M}_n^\lambda(D_X, \mathbb{Q})\) and satisfies:

3.2.1 \(\text{MHM}(pt, n)\) is the category of \(\mathbb{Q}\)-Hodge structures of weight \(n\).

3.2.2 If \(\text{supp} M = \{x\}\), \(M \in \text{MHM}(X, n)\), there exists \(M' \in \text{MHM}(pt, n)\) such that \(M = \varphi_{x}\cdot M' = M\), where \(\varphi_{x} : \{x\} \rightarrow X\).

3.2.3 If \(\mathcal{M} \in \text{MHM}(X, n)\), \(\mathcal{M}\) is regular and quasi-unipotent along \(g\), \(\mathcal{G} = \mathcal{G}_{\mathcal{M}}\mathcal{M}\), \(\mathcal{G}_{\mathcal{M}}\) is \(\mathcal{M}\) in \(\text{MHM}(U, 1)\) for any \(i, j\), \(\varphi_{g,1} = \varphi_{\mathcal{M}}\mathcal{M}\) for any \(g\) defined on an open subset \(U\), \(\mathcal{W}\) is the monodromy filtration shifted by \(n-1\) and \(n\).

Here for a closed immersion \(i: X \rightarrow Y\) of codimension \(k\) such that \(X = \{p = \cdots = p_k = 0\}\), the direct image \(i_*(\mathcal{M}, \varphi)\) of a filtered \(D_X\)-module \(\mathcal{M}\) is defined by

\[
(i_*(\mathcal{M}, \varphi) = \mathcal{M} (\lambda_1, \ldots, \lambda_k, \varphi) \text{ with } F_p i_*(\mathcal{M}) = \bigoplus_{q + p - \lambda - k} \mathcal{M} \text{ for } p > 0
\]

where \(\lambda_j\) are vector fields such that \([\lambda_j, \varphi_i] = 0\) for \(i < j\), cf. [Bo]. We say that \((\mathcal{M}, \varphi) \in \mathcal{M}_n^\lambda(D_X, \mathbb{Q})\) is regular and quasi-unipotent along \(g\), if the monodromy \(\mathcal{G}(g, 1)\) is quasi-unipotent and \((\mathcal{M}, \varphi, \xi) = \varphi_{g,1} i_*(\mathcal{M})\) satisfies

\[
t: p \mathcal{G}_{\mathcal{M}} = p \mathcal{G}_{i_*(\mathcal{M})}\text{ for } a > 0
\]

\[
\varphi_{g,1} : p \mathcal{G}_{\mathcal{M}} = p \mathcal{G}_{i_*(\mathcal{M})}\text{ for } a < 0
\]

where \(t : X \rightarrow X \circ g\) is the immersion by graph of \(g\), \(t\) is the coordinate of \(g\) and \(\mathcal{G}\) is the filtration of Malgrange-Kashiwara [K1] indexed by \(\mathbb{Q}\) such that \(t_{\mathcal{G}} - \alpha\) is nilpotent on \(\mathcal{G}_{\mathcal{M}}\). In this case we define

\[
\mathcal{G}_{\mathcal{M}}(\mathcal{M}, \varphi, \xi) = (\theta_{\mathcal{M}, \varphi, \xi} \mathcal{G}_{\mathcal{M}}(\mathcal{M}, \varphi, \xi)) \text{ for } i = 1\)
\[
\varphi_{g,1} i_*(\mathcal{M}, \varphi, \xi) = (\mathcal{G}_{\mathcal{M}}(\mathcal{M}, \varphi, \xi)) \text{ for } i = 1
\]
and can: $\phi_{G,1} \circ \delta_{G,1}$ and Var: $\psi_{G,1} \circ \delta_{G,1}$ are induced respectively by ϕ_{1} and σ, where $M_{[1]} = P_{[1]}$. Here we use left D-Modules. For the correspondence with the right Modules we use $(\hat{H}_{X}^{K})^0$ with $Gr_{[1]}^{d} = 0$ for $1 \neq d$. Actually $\operatorname{MH}(X,n)$ is defined to be the largest full subcategory of $\operatorname{MF}_{K}(X,\mathbb{Q})$ satisfying (3.2.1-3). This is well-defined by induction on $\dim \supp M$. (In the analytic case we have to care about the difference of global and local irreducibility.) Let Z be a closed irreducible subvariety of X. We say that (M, \mathbb{F}, K) has strict support Z, if M (or K) has no subobject and no quotient object supported in a proper subvariety of Z and $\supp M = Z$. Let $\operatorname{MH}_{Z}(X,n)$ denote the full subcategory of the objects with strict support Z. Then we have the strict support decomposition (3.2.6) $\operatorname{MH}(X,n) = \bigoplus_{Z} \operatorname{MH}_{Z}(X,n)$.

A polarization of $(M, \mathbb{F}, K) \in \operatorname{MH}_{Z}(X,n)$ is a pairing $S: K \otimes K \to \mathbb{Q}(n)$ satisfying

(3.2.7) If $Z = \{x\}$, there is a polarization S' of Hodge structure $\mathbb{L}[1]$ such that $S = \delta_{x} S'$, where δ_{x} and δ_{x} are as in (3.2.2).

(3.2.8) S is compatible with the Hodge filtration $F_{\mathbb{F}}$, i.e. the corresponding isomorphism $K \cong (\mathbb{F}(n))$ is extended to an isomorphism $(\mathbb{F}(n)) \cong (\mathbb{F}(n))$.

(3.2.9) For any g as in (3.2.3) such that $g^{-1}(0) \subseteq Z$, the induced pairing

$$P_{g,0}(1 \otimes K) : G_{n-1+1}^{W} K[-1] \otimes G_{n-1+1}^{W} K[-1]$$

is a polarization on the primitive part $P_{n+1}^{W} K$ of $\mathbb{F}_{K}^{\mathbb{F}}(n+1)$.

(cf. [S2] for the definition of $\mathbb{F}(n)$ and $P_{g,0}$. Here the condition (3.2.9) is again by induction on $\dim \supp M$.

We say that $(M, \mathbb{F}, K) \in \operatorname{MH}(X,n)$ is polarizable, if it has a polarization, and we denote by $\operatorname{MH}(X,n)^{P}$ the full subcategory of polarizable Hodge Modules. Here a polarization of $M = \mathbb{F} \otimes_{\mathbb{Q}}$ with $\mathbb{F} \in \operatorname{MH}_{Z}(X,n)$ is a direct sum of polarizations on \mathbb{F}_{Z}.

The main result of [S2] is that $\operatorname{MH}(X,n)^{P}$ is stable by projective direct image. Here for the projection $p : X \times Y \to Y$ and $(M, \mathbb{F}) \in \operatorname{MF}_{K}(X,\mathbb{Q})$, we define the direct image $p_{*}(M, \mathbb{F})$ to be the usual direct image of the filtered complex $DR_{X \times Y/Y}$ $(M, \mathbb{F})[n]$ where $n = \dim X$ and

$$p_{*}(M, \mathbb{F}) \in \mathbb{F}_{Z} \otimes \mathbb{Q}(n) \otimes \mathbb{F}_{p+1} \otimes \cdots \otimes \mathbb{F}_{n} \otimes \mathbb{F}_{p+1} \otimes M$$

(Note that the assumption p smooth is not enough to get an object of the derived category of filtered D-Modules.).

Combining with the case of closed immersion, we get the definition of the general case (cf. [S2, §2] for a more intrinsic definition). Then for $(M, \mathbb{F}, K) \in \operatorname{MH}(X,n)^{P}$ and $q : X \to Y$ projective, we can prove that $q_{*}(M, \mathbb{F})$ is strict and $\mathbb{F}_{\mathbb{F}}(M, \mathbb{F}, K) = (\mathbb{F}_{\mathbb{F}}(M, \mathbb{F}, K)) \otimes K$ belongs to $\operatorname{MH}(Y,n)^{P}$. We also verify that $P_{X}^{W} \mathbb{Q}_{X} \otimes \mathbb{Q}_{X} = (0 \otimes \mathbb{Q}_{X}) \otimes \mathbb{Q}_{X}$ belongs to $\operatorname{MH}(X,n)^{P}$ where $\mathbb{Q}_{X}^{W} = 0$ for $p \neq 0$.

3. The mixed Hodge Modules are roughly speaking obtained by extensions of polarizable Hodge Modules. Here the extension is not arbitrary and to control this, we use again the vanishing cycle functors.

Let $\operatorname{MH}(X)$ be the full subcategory of $\operatorname{MF}_{K}(X,\mathbb{Q})$ such that Gr_{d}^{W} belongs to $\operatorname{MH}(X)^{P}$ (i.e. the extension is arbitrary). Let g be a function on X. Put $(N, F, K) = G_{n}^{W} K$ for $M = (N, \mathbb{F}, K) \in \operatorname{MH}(X)$.

We say that the vanishing cycle functors along g are well-defined for N if

(3.3.1) the relative monodromy filtration W (cf. [D2]) of (\mathbb{F}_{X}, L), (\mathbb{F}_{X}, L), exists,

(3.3.2) $F_{V} W$ on N are compatible [S2, §1].

Here $L_{g}^{W} K = g^{W} K$ and $L_{g}^{W} K = g^{W} K$. If (3.3.1-2) are satisfied, we define...
and can: $\psi_{E,1} \circ \phi_{E,1}$ and $\varphi_{E,1} \circ \psi_{E,1} (-1)$ are induced respectively by $-\delta_{E}$ and t, where $F\{H\} = \mathcal{F}(-n)$. Here we use left D-Modules. For the correspondence with the right Modules we use $(\mathcal{H}_{X,Y} f) \otimes$ with $\mathcal{O}_{\mathcal{H}_{X,Y}} = 0$ for $1 \neq \delta_{X}$. Actually $\mathcal{H}(X,n)$ is defined to be the largest full subcategory of \mathcal{M}_{X} satisfying $\mathcal{J}(x,1)$- in the analytic case we have to care about the difference of global and local irreducibility. Let Z be a closed irreducible subvariety of X. We say that (M,F,K) has strict support Z, if M (or K) has no subobject and no quotient object supported in a proper subvariety of Z and supp K = Z. Let $\mathcal{H}(X,n)$ denote the full subcategory of the objects with strict support Z. Then we have the strict support decomposition

$$(3.2.5) \mathcal{H}(X,n) = \bigoplus_{Z} \mathcal{H}_{Z}(X,n).$$

A polarization of $(M,F,K) \in \mathcal{H}_{Z}(X,n)$ is a pairing $S : K \otimes K^{*}$ satisfying

$$(3.2.6) \text{If } Z = \{x\}, \text{there is a polarization } S' \text{ of Hodge structure } M' \{D\} \text{ such that } S = \delta_{x} S', \text{ where } \delta_{x} \text{ and } M' \text{ are as in } (3.2.2).$$

(3.2.7) S is compatible with the Hodge filtration F, i.e. the corresponding isomorphism $K \cong (F^{k}(1-n))$ is extended to an isomorphism $(M,F,K) \cong (F^{k}(1-n))$.

(3.2.8) For any g as in (3.2.3) such that $g^{-1}(0) \neq Z$, the induced pairing

$$P_{g} S_{0}(1 \otimes K^{*}) : g_{n,n-1}^{W} \otimes \mathcal{O}_{n,n-1}^{W} \mathcal{D}(1)$$

is a polarization on the primitive part $F_{n,n-1}^{\mathcal{D}}$.

(cf. [S2] for the definition of $\mathcal{D}(M,F,K)$ and $P_{g} S$). Here the condition (3.2.9) is again by induction on dim supp M. We say that $(M,F,K) \in \mathcal{H}(X,n)$ is polarizable, if it has a polarization, and we denote by $\mathcal{H}(X,n)^{P}$ the full subcategory of polarizable Hodge Modules. Here a polarization of $M = 0$, \mathcal{H}_{Z} with $\mathcal{H}_{Z} \in \mathcal{H}_{Z}(X,n)$ is a direct sum of polarizations on \mathcal{H}_{Z}.

The main result of [S2] is that $\mathcal{H}(X,n)^{P}$ is stable by projective direct image. Here for the projection $p : X \times Y \rightarrow Y$ and $(M,F) \in \mathcal{H}_{Z}(X,y)^{P}$, we define the direct image $p^{*}(M,F)$ to be the usual direct image of the filtered complex $\mathcal{O}_{X} \otimes \mathcal{O}_{Y}$ $(M,F)^{[n]}$ where $n = \dim X$ and

$$p_{*} \mathcal{H}_{X} = \bigoplus_{i} [\mathcal{O}_{X} \otimes (-1)^{i} \mathcal{O}_{Y} \otimes \cdots \otimes \mathcal{O}_{X} \otimes \mathcal{O}_{Y}]^{\otimes p^{*}(M,F)}$$

(Note that the assumption p smooth is not enough to get an object of the derived category of filtered D_{c}-modules.)

Combining with the case of closed immersion, we get the definition of the general case (cf. [S2, §2] for a more intrinsic definition). Then for $(M,F,K) \in \mathcal{H}(X,n)^{P}$ and $r : X \rightarrow Y$ projective, we can prove that $r_{*}(M,F)$ is strict and $H^{e}_{r}(M,F,K) = (H^{e}_{r}(M,F,K))^{P}$ belongs to $\mathcal{H}(Y,m)^{P}$, $m = \operatorname{dim} Y$. We also verify that $g_{X,Y = 0}(\mathcal{O}_{X},(\mathcal{O}_{X})^{\otimes p^{*}(M,F)}) \in \mathcal{H}(X,n)^{P}$ where $\mathcal{O}_{X}^{\otimes p^{*}(M,F)} = 0$ for $p \neq 0$.

3.3. The mixed Hodge Modules are roughly speaking obtained by extensions of polarizable Hodge Modules. Here the extension is not arbitrary and to control this, we use again the vanishing cycle functors.

Let $\mathcal{H}(X)$ be the full subcategory of \mathcal{M}_{X} $(\mathcal{D}, \mathcal{O}_{X})$ such that g_{X}^{W} belongs to $\mathcal{H}(X,n)^{P}$ (i.e. the extension is arbitrary). Let g be a function on X. Put $(\mathcal{H}_{n}, F, W) = 1_{n}(\mathcal{H}_{n}, F, W)$ for $N = (N, F, K, W) \in \mathcal{H}(X)$. We say that the vanishing cycle functors along g are well-defined for N if

$$(3.3.1) \text{the relative monodromy filtration } W \text{ (cf. [D2]) of } (\mathcal{H}_{n}, L), (\mathcal{D}_{n}, L), \text{ exists},$$

$$(3.3.2) F, V, W \text{ on } \mathcal{H}(X) \text{ are compatible [S2, §1].}$$

Here $L_{1}^{\mathcal{D}} K = \mathcal{H}_{1}^{W} K$ and $L_{1}^{\mathcal{D}} K = \mathcal{H}_{1}^{W} K$. If (3.3.1-2) are satisfied, we define

168
\[\psi^*_g = (\psi^*_g(M,F,K),W), \quad \phi^*_g = (\phi^*_g(M,F,K),W) \]

of (3.2.5). Let \(J: U \to X \) be an open immersion such that the complement is a divisor. We say that the \textit{direct images} \(J_* \) and \(J^! \) are well-defined for \(M \in \text{MMW}(U) \) if there exist \(M_1 \) and \(M_2 \) such that \(\text{rat}(M_1) = J_* \text{rat}(M) \) and the vanishing cycle functors along \(g \) are well-defined for \(M_1 \) and \(M_2 \) for any local (not necessarily reduced) equation of the divisor. Here \(\text{rat}(M) = K \) if \(M = (M,F,K) \). We can show that \(M_1 \) and \(M_2 \) are at most unique if we fix \(g \), but they might depend on the choice of the ideal generated by \(g \). To avoid this ambiguity, we take the above definition.

The category of \textit{mixed Hodge Modules} \(\text{MM}(X) \) is defined to be the largest full subcategory of \(\text{MMW}(X) \) stable by the functors \(\psi^*_g, \phi^*_g, J_*, J^! \), \(\Theta_g \) for any locally defined function \(g \), partial compactification of an open subset \(J: U \to U' \) such that the complement is a divisor, and smooth \(Y \). Here we assume that the vanishing cycle functors along \(g \) (resp. the direct images \(J_* \) and \(J^! \)) are well-defined, when we say that it is stable by such functors, cf. [S3, S5].

3.4. Remark. The condition (3.13.11) in [S2] is not stable by base change. This condition is reasonable only in the unipotent monodromy case. In general we have to take a unipotent base change, or use the \(V \)-filtration, and assume the compatibility of \(F, W, V \) on Deligne's extension, because the \(V \)-filtration is essentially induced by the \(m \)-adic filtration on the pull-back by a unipotent base change.

3.5. Remark. Let \(Z \) be a projective variety with an ample line bundle \(L \) such that \(Z \) is embedded in \(X = \mathbb{P}^N \) by \(L^1 \). Then for \((M,F,K,W) \in \text{MM}(X) \) we have the \textit{Kodaira vanishing}

\[H^i(Z, \text{Gr}^F_{P,G}(M,F) \otimes \mathcal{O}_Z L^1) = 0 \quad \text{for } i \geq 0. \]

This implies a vanishing of Ohsawa-Kollár (where \((M,F) = H^0(M,F) \) and \(\text{Gr}^F_{P,G}(M,F) = H^0 f^* \omega_Y \) for \(f: Y \to X \) with \(\gamma \) smooth), and that of Guillén-Navarro-Puerta

\[H^j(\text{Gr}^F_{P,G}(M,F) \otimes \mathcal{O}_L) = 0 \quad \text{for } j > \dim Z \]

\[H^j \text{Gr}^F_{P,G}(M,F) = 0 \quad \text{for } j < p \text{ or } j > \dim Z. \]

We can also generalize Kollár's torsion freeness to the proper Kähler case using [KK]. (This can be also generalized to the assertion for the first nonzero Hodge filtration of pure Hodge Modules.)

REFERENCES

\[H^j(\text{Gr}_{\text{ps}} \mathcal{P}_X^F \otimes L) = 0 \quad \text{for} \quad j > \dim Z \]
\[H^j(\text{Gr}_{\text{ps}} \mathcal{P}_X^F) = 0 \quad \text{for} \quad j < p \quad \text{or} \quad j > \dim Z. \]

We can also generalize Kollár's torsion freeness to the proper Kähler case using [KK]. (This can be also generalized to the assertion for the first nonzero Hodge filtration of pure Hodge Modules.)

REFERENCES

The spectrum of hypersurface singularities

J. M. M. Steenbrink
Mathematical Institute
Catholic University
Torhoutseweg
6525 ED NIjmegeen
The Netherlands

Introduction

Many results about the topology of complex hypersurface singularities have a Hodge-theoretic counterpart. The monodromy theorem for isolated singularities combined with the Hodge filtration on the vanishing cohomology have led to the notion of the spectrum ([1], [5], [6]). The spectrum is a powerful invariant, giving necessary conditions for adjacency of singularities. In this paper, we define the spectrum for arbitrary (i.e. not necessarily isolated) hypersurface singularities and investigate some of its properties. In particular we conjecture a Thom-Sebastiani type theorem about the spectrum. This formula has recently been proven by M. Saito using the description of the mixed Hodge structure on the cohomology of the Milnor fibre via his theory of mixed Hodge modules [M1]. Moreover, we investigate the behaviour of the spectrum under certain deformations. We consider a hypersurface \(f = 0 \) in \(\mathbb{C}^{n+1} \) whose singular locus is of dimension one and compare this with a hypersurface \(f + \epsilon \phi = 0 \) where \(\epsilon \) is sufficiently small and \(\phi \) is a linear form which is not tangent to any component of the critical locus of \(f \). We conjecture a formula for the spectrum of \(f + \epsilon \phi \) which generalizes a formula of Yomdin [Y] for the Milnor number. We are able to prove this formula in certain cases, which are listed in \(\S 2 \). M. Saito has recently given a proof in the general case [Sa2]. The corresponding formula for the characteristic polynomial of the monodromy has been proven by D. Siersma [Si2].

As an application, we give an example, found together with J. Stevens, of two isolated plane curve singularities which have different topological types but equal spectra. This gives a negative answer to a question mentioned by W. Neumann [N1], namely whether the real monodromy and Seifert form determine the (embedded) topology of an isolated complex hypersurface singularity. We also give an example in dimension two, which shows that even the topological type of the hypersurface singularity itself is not determined by these data. A detailed discussion of this will appear elsewhere.

It should be remarked that the spectrum of the affine cone over a