C. SANCHO DE SALAS

Moduli of analytic branches

Introduction

The purpose of this paper is to compute the underlying set of the moduli space for irreducible analytic branches embedded in affine-space over an algebraically closed field k of arbitrary characteristic.

Let:

$$
C \hookrightarrow X = \text{Spec}(k[[T_0, \ldots, T_m]])
$$

be an analytic branch and $\{r_i\}_{i=0}^{\infty}$ the sequence of multiplicities of C and its successive quadratic transforms. We will denote by r the following:

$$
r = h + 2 \sum_{i=0}^{\infty} r_i (r_i - 1)^2
$$

where h is the number of quadratic transformations needed to desingularise C.

Let C_r be the r-th quadratic transform of C let $X_r^F \rightarrow X$ be the r-th quadratic transform of X in the direction of C and

$$
\pi_r : X_r^F \rightarrow X
$$

the canonical map. If X_0^C is the reduced exceptional fibre of π_r we will denote by I the sheaf of ideals defining X_0 and let $X_n^C \hookrightarrow X_r^F$ be the closed subscheme which is defined by I^{n+1}.

Let $L = I/I^2$ be the conormal sheaf to X_0 in X_r^F.

Definition: Two embedded branches $C \hookrightarrow X'$, $C' \hookrightarrow X$ are equisingular when X_1^C and $X_1^{C'}$ are isomorphic schemes. That is, one defines the equisingularity of $C \hookrightarrow X$ to be the scheme X_1^C.

Let X_1 be an equisingularity. Also let $M(X_1)$ be the set of analytic equivalence classes of branches with equisingularity X_1.

Let $\mathcal{O}_{X_1}^K$ denote the sheaf of \mathcal{O}_{X_0}-modules.
Similarly let \(G_L \) denote the sheaf
\[
G_L = L^2 \otimes L^3 \otimes L^4 \otimes \cdots \otimes L^K.
\]

Let \(H^1 \) denote the \(k \)-vector space
\[
H^1 = H^1(X_0, \text{Der}_k(\mathcal{O}_{X_1}, \mathcal{O}_{X_0}) \otimes \mathcal{O}_{X_0}^* G_L^K).
\]

Main theorem: There exists a natural integer \(K \) and a certain quotient set \(M \) of \(H^1 \)
\[
\pi : H^1 \longrightarrow M
\]
such that \(M(X_1) \) is the subset of \(M \) defined by the vanishing of a 2-cycle obstruction class belonging to
\[
H^2(X_0, \text{Der}_k(\mathcal{O}_{X_1}, \mathcal{O}_{X_0}) \otimes \mathcal{O}_{X_0}^* G_L^K)
\]
and associated to each point of \(M \).

(More precision and details will be given below).

As a particular case; when \(k = \mathbb{C} \), the complex field, and \(\dim X = 2 \) one gets a result of O. Zariski [5] stating that the moduli space for plane analytic branches over \(\mathbb{C} \) is a quotient of a vector space.

In the present paper a sort of description of the fibres of \(\pi \) is given. I hope to come back to this problem in a future paper.

0. Notations

The ground field \(k \) will be algebraically closed and of arbitrary characteristic. We will denote the ring of formal power series in \(m+1 \) variables, with coefficients in \(k \), by
\[
A = k[[T_0, \ldots, T_m]].
\]

We will also denote by \(X \) the spectrum of \(A \) and by \(\hat{X} \) the formal spectrum of \(A \) (in the sense of Grothendieck [2]).

Given a natural integer \(n \) and an analytic branch (always irreducible) \(1 : C \hookrightarrow X \), one defines the "\(n \)-th blowing up" of \(\hat{X} \) in the direction of \(C \) as the sequence
\[
\begin{array}{c}
{\hat{X}}(C) \\
\end{array}
\]

where \({\hat{X}}(C) \) is the formal completion of the strict transform of \(C \) in \(\hat{X} \), the formalisation of the blow-up of \(X \) about \(C \).

is is algebraisable, that is, it is the formalisation of the blow-up of \(X \) about \(C \).

is exactly:

1. **Equivalence theorem**

One starts with \(1 : h \) denotes the minimum

then if

is the \(r \)-th blowing up of \(X \) over \(C \),

\[[r_n]_{n=0} \] then \(\hat{X}(C) \) is precisely:

Theorem 1.1: If \([r_n]_{n=0} \) then \(\hat{X}(C) \) and \(\hat{X}(C) \) are isomorphic schemes; i.e.
sequence
\[\hat{x}(C_n) \rightarrow \hat{x}(C_{n-1}) \rightarrow \ldots \rightarrow \hat{x}(C_0) = \text{Sp } f(A) \]

where \(\hat{x}(C_1) \) is the formal blowing up of \(\hat{x}(C_{i-1}) \) along the closed point of \(C_{i-1} \) (i.e.: the formalisation of the local blowing up of \(\hat{x}(C_{i-1}) \)) and \(C_1 \) is the strict transform of \(C_{i-1} \) starting with \(C_0 = C \).

The morphism:
\[\pi_n: \hat{x}(C_n) \rightarrow \text{Sp } f(A) \]

is algebraisable, that is: there exists an ideal \(I \) of \(A \) such that the formalisation of the blowing up \(\hat{x}(C_n) \) of \(X \) along \(I \):
\[\hat{x}(C_n) \rightarrow \text{Spec}(A) \]

is exactly:
\[\pi_n: \hat{x}(C_n) \rightarrow \text{Sp } f(A) \].

1. Equivalence theorem. Upper bound for the conductor

One starts with the following: for every multiplicity sequence \(\{ r_n \}_{n=0}^{\infty} \), if \(h \) denotes the minimum integer such that \(r_h = 1 \), one defines \(r \) to be the integer:
\[r = h + 2 \sum_{i=0}^{\infty} r_i (r_i - 1)^2 \]

then if
\[\hat{x}(C_r) \rightarrow \hat{x} \]

is the \(r \)-th blowing up of \(\hat{x} \) directed by the branch \(C \) with multiplicity sequence \(\{ r_n \}_{n=0}^{\infty} \) then \(\hat{x}(C_r) \) determines the branch \(C \) up to analytic equivalence. More precisely:

Theorem 1.1: If \(C, C' \) are two branches with the same multiplicity sequence \(\{ r_n \}_{n=0}^{\infty} \) then \(C, C' \) are analytically equivalent if and only if the schemes \(\hat{x}(C_r) \) and \(\hat{x}(C'_r) \) are isomorphic.

To prove this theorem one needs some lemmas.

Lemma 1.2: \(C, C' \) are analytically equivalent if and only if they are isomorphic schemes; i.e.,
\[C = \text{Spec}(\mathcal{O}_C) = \text{Spec}(\mathcal{O}_{C'}) = C' \].

187
if one denotes by

$$C = \text{Spec}(k[[T]])$$

the desingularization of C and by c the conductor, then $\mathcal{C} = T^c k[[T]]$, where

$$c = \ell(O_C/C)$$

is the length of the conductor and one has

$$T^c k[[T]] \cong O_C.$$

Lemma 1.3: If $\ell \geq c$, then O_C and O_C are isomorphic if and only if the respective subalgebras of $k[[T]]/(t^c)$ they induce are isomorphic, i.e.: if and only if there exists an automorphism of $(T^c) k[[T]]$ that maps one subalgebra onto the other.

We will now prove that the length c of the conductor of a branch C is bounded by the multiplicity sequence $(r_i)_{i=0}^{\infty}$. More precisely, there exists a positive integer $K (= 2 \sum_{i=0}^{\infty} r_i (r_i - 1)/2)$, depending only on the given multiplicity sequence, such that $c \leq K$.

Let $O_C = k[[T]]$ be the ring of the desingularization of C and, let v_C be the valuation of the field of fractions of O_C induced by O_C. If m_C is the maximal ideal of O_C and t is an element of m_C with minimum value for v_C then

$$v_C(t) = \text{multiplicity of } O_C = r_0.$$

Moreover, one has

$$\dim_k (m_C/m^2_C) \leq r_0 = \dim_k (m_C/tm_C).$$

We will denote by d_C the embedding dimension of C:

$$d_C = \dim_k (m_C/m^2_C);$$

it is clear that d_C is a formal analogue of elements which generate the k-algebra O_C.

Lemma 1.4: For a plane branch C, i.e.: $d_C = 2$, then

$$m_C^n = tm_C^{n-1}$$

for all $n > r_0 - 1$.

As a corollary on m^n_C algebra contains all the subalgebras and with multiplicity m^n_C.

Lemma 1.5: $m^n_C = t^n C_1$

If O_C is the C_1

and also $d_C \leq r_0$. We shall prove:

Corollary 1.6: $m^n_C = t^n C_1$

Proof: The second

(recall that $q = (r_0 > \ldots)$

because $r_0 = \ell(O_C/t)$

Corollary 1.7: $d_C = 2$

If one uses the

one concludes that

Corollary 1.8: The multiplicity sequence
As a corollary one gets the following general result in the case \(d_C \geq 1 \). As the algebra

\[
\mathcal{O}_C = k[[t, t_1, \ldots, t_{d_C - 1}]]
\]

contains all the subalgebras \(k[[t, t_i]] \) for \(1 \leq i \leq d_C - 1 \), which are plane branches and with multiplicities \(\leq r_0 = v_C (t) \), one can apply lemma 1.4 to get

Lemma 1.5: \(m^n_C = t m_{C}^{n-1} \) for all \(n > (r_0 - 1)(d_C - 1) = q \) and so one has

\[
m^n_C = t^{n-q} m^q_C .
\]

If \(\mathcal{Q}_{C_1} \) is the first quadratic transform of \(\mathcal{O}_C \), then

\[
\mathcal{Q}_{C_1} = \bigcup_{i=0}^{\infty} t^i \mathcal{O}_C = \mathcal{O}_C (t, t^2, \ldots, t^q, \ldots) \quad \text{(field of fractions of } \mathcal{O}_C),
\]

and also \(d_{C} \leq r_0 \). The lemma applies and gives

Corollary 1.6: \(m^{n-1}_{C} \mathcal{Q}_{C} = m^{n-1}_{C} \) for all \(n > (r_0 - 1)^2 \) and so

\[
\ell (\mathcal{O}_{C_1} / \mathcal{O}_C) \leq r_0 (r_0 - 1)^2 .
\]

Proof: The second part results from the fact that

\[
m^q_{C_1} = m^q_C
\]

(recall that \(q = (r_0 - 1)(d_C - 1) > (r_0 - 1)^2 \)). So one has

\[
\ell (\mathcal{O}_{C_1} / \mathcal{O}_C) \leq \ell (\mathcal{O}_{C_1} / m^q_{C_1} \mathcal{O}_C) = \ell (\mathcal{O}_{C_1} / t^q \mathcal{O}_{C_1}) = q \cdot r_0
\]

because \(r_0 = \ell (\mathcal{O}_{C_1} / t \mathcal{O}_{C_1}) \).

Corollary 1.7: \(\ell (\mathcal{O}_{C_1} / \mathcal{O}_C) \leq \sum_{i=0}^{\infty} r_1 (r_1 - 1)^2 .
\]

If one uses the inequality

\[
\ell (\mathcal{O}_{C_1} / \mathcal{O}_C) \leq \ell (\mathcal{O}_{C_1} / \mathcal{O}_C)
\]

one concludes that

\[
c = \ell (\mathcal{O}_{C_1} / \mathcal{O}_C) \leq \ell (\mathcal{O}_{C_1} / \mathcal{O}_C) + \ell (\mathcal{O}_{C_1} / \mathcal{O}_C) \leq 2 \sum_{i=0}^{\infty} r_1 (r_1 - 1)^2 .
\]

Corollary 1.8: The length \(c \) of the conductor of a branch \(C \) with multiplicity sequence \(\{ r_n \}_{n=0}^\infty \) is bounded as follows:
Let \(h \) be the number of quadratic transformations necessary to desingularise \(C \), that is \(h \) is the least integer such that \(r_1 = 1 \).

Let

\[\pi_h : \hat{X}(C_h) \to Spec f(A) \]

be the desingularisation map of \(C \). Suppose \(C' \to X \) is another branch and \(\hat{C'} \to \hat{X}(C_h) \) its strict transform for \(\pi_h \) (\(C' \) is supposed to have the same multiplicity sequence as \(C \)). Then one has

Lemma 1.9: If \(C_h \) and \(\hat{C}' \) have a contact of order \(m \geq 1 \), then \(O_C \) and \(O_{\hat{C}'} \) induce isomorphic subalgebras in \(k[[T]]/(T^m) \).

Proof: As \(C, C' \) have the same multiplicity sequence, if \(C_h \) and \(\hat{C}' \) intersect, then \(\hat{C}' = C_h' \) is simple and \(C, C' \) are direct identical \(h \)-blowing ups of \(\hat{X} \). Let \(T \) be a function on \(\hat{X}(C_h) \) that is a parameter for \(C_h \) and \(C_h' \). If \(A = k[[T_0, \ldots, T_m]] \), then by the contact condition \(T_0, \ldots, T_m \) will have the same expansion up to order \(m \) along both branches \(C, C' \).

This means that the following diagram of natural maps is commutative:

\[
\begin{array}{ccc}
O_C & \to & O_{\hat{C}'} \\
\downarrow & & \downarrow \\
A & \to & k[[T]]/(T^m) \\
\end{array}
\]

Lemma 1.10: For the formal schemes \(\hat{X}(C_{h,m}) \) and \(\hat{X}(C_{h,m}') \) to be isomorphic it is necessary and sufficient that there exists an automorphism \(\tau \) of \(X \) such that the desingularisation \(\tau(C)_h \) of \(\tau(C) \) has a contact of order \(m \) with \(C'_h \).

Proof: Given an isomorphism

\[\Phi : \hat{X}(C_{h,m}) \to X(C_{h,m}) \]

by taking global sections one gets an automorphism \(\tau \) of \(X \). Conversely, given a \(\tau \) with the properties of the lemma, \(\tau \) induces an isomorphism

\[\Phi : \hat{X}(C_{h,m}) \to \hat{X}(C_{h,m}) = \hat{X}(C_{h,m}'). \]

Proof (of theorem 1.1): Taking \(m = 2 \sum_{i=0}^{\infty} r_i (r_i - 1)^2 \) and applying lemmas 1.10, 1.9, then corollary 1.8 and lemmas 1.3, 1.2 (in this order) one concludes that if the formal schemes \(\hat{X}_h \) in \(X \) are analytically equivalent, then

2. Characterization of \(\hat{X}_h \)

Let \(\{r_n\}_{n=0}^\infty \) be the \(r \)-th formal blowing up in \(X \), with multiplicity \(\hat{C}' \) the \(r \)-th blowing up

in the direction of \(\hat{X}_h \).

Let \(\hat{X}' \) be a formal scheme in \(X \) starting with \(\hat{X}_h \) and \(\hat{X}' \) is locally isomorphic to \(\hat{X} \).

Proof: Let \(\hat{X}_h \) be an \(r \)-blowing up of \(X \), \(\hat{X}_h \) are isomorphic. Suppose \(\hat{X}_h \) is a closed point, then the

\[O_{\hat{X}_h} \]

where \(\cdot \) is the number of points through \(x \). This proves...
the formal schemes $\hat{X}(\mathcal{C}_r)$ and $\hat{X}(\mathcal{C}'_r)$ are isomorphic, then the branches \mathcal{C}, \mathcal{C}' in X are analytically equivalent. The converse is immediate.

2. Characterization of the "blowing ups" which are directed by a branch

Let $[r_n]_{n=0}^\infty$ be a multiplicity sequence of a branch \mathcal{C} embedded in X. Let

$$r = h + 2 \sum_{i=0}^{\infty} r_i(r_i - 1)^2$$

where h is minimal with the condition that $r_h = 1$. For every embedded branch \mathcal{C}' in X, with multiplicity sequence $[r_n]_{n=0}^\infty$, one denotes by

$$\pi'_r: \hat{X}(\mathcal{C}'_r) \rightarrow \hat{X}$$

the r-th formal blowing up in the direction of \mathcal{C}'; X'_o will denote the exceptional reduced fibre of π'_r and L' the conormal sheaf to X'_o in $\hat{X}(\mathcal{C}'_r)$.

We now fix an embedded branch \mathcal{C} in X with multiplicity sequence $[r_n]_{n=0}^\infty$. Let (X'_o, L) be the exceptional fiber and the conormal sheaf in the r-th blowing up

$$\hat{X}(\mathcal{C}_r) \rightarrow \hat{X}$$

in the direction of \mathcal{C}.

Let $\hat{\mathcal{C}}'$ be a formal scheme along a closed subscheme isomorphic to X'_o. Suppose that the conormal sheaf to X'_o in $\hat{\mathcal{C}}'$ is isomorphic to L. The main result characterizing the r-th blowing up is the following.

Theorem: $\hat{\mathcal{C}}'$ is isomorphic to the composition of r formal blowing ups starting with $\hat{\mathcal{C}}'$ and with centers at closed points if and only if the sheaf $\mathcal{O}_{\hat{\mathcal{C}}'}$ is locally isomorphic to $\mathcal{O}_{\hat{X}(\mathcal{C}_r)}$ along X'_o.

Proof: Let

$$\pi'_r: \hat{X}(\mathcal{C}'_r) \rightarrow \hat{X}$$

be an r-blowing up of \hat{X} in the direction of $\mathcal{C}' \subset X$. Suppose also that X'_o and X'_o are isomorphic. One can prove easily by induction on r that if $x \in X'_o$ is a closed point, then the local ring at x is:

$$\mathcal{O}_{\hat{X}(\mathcal{C}'_r), x} = \left[k[Y_0, \ldots, Y_t][[Y_0^{-1}, \ldots, Y_t^{-1}]] \right]$$

where t is the number of irreducible connected components of X'_o which pass through x. This proves the only if part.
Conversely, let \(X_0 \) be embedded in \(\tilde{X}' \) with the conditions of the theorem. Suppose

\[
X_0 = X_0^{1} U \cdots U X_0^{r}
\]

is the decomposition of \(X_0 \) into irreducible components, and

\[
\tilde{x}(C_r) \longleftarrow X_0 \longleftarrow \tilde{x}'
\]

are the given embeddings. Then there are positive integers \(n_1, \ldots, n_r \) such that \(\mathcal{O}(-n_1 X_0^{1} + \cdots + n_r X_0^{r}) \) is an ample line sheaf for

\[
\pi_r: X(C_r) \rightarrow \tilde{x}.
\]

So its inverse image \(i^* \mathcal{O}(-n_1 X_0^{1} + \cdots + n_r X_0^{r}) \) is ample on \(X_0 \). This implies that the other inverse images \(i^* \mathcal{O}(-n_1 X_0^{1} + \cdots + n_r X_0^{r}) \) are also ample on \(X_0 \) (because by the hypothesis \(i^* \mathcal{O}(-X_0) = \mathcal{L} \equiv \mathcal{L}^r = i^* \mathcal{O}(-X_0) \)). One can then apply H. Artin’s theorem on contractions ([4], Corollary (6.10)) to conclude that there exists a modification (see [4] for definition):

\[
\tilde{x}' : \tilde{x} \rightarrow \tilde{x}
\]

where \(\tilde{x} \) is the formal spectrum of a complete local ring. By Grothendieck’s algebraization theorem [3], there is a scheme \(\tilde{X}' \) containing \(X_0 \) as a closed subscheme and such that \(\tilde{X}' \) is the formalization of \(X' \) along \(X_0 \); corollary (6.11) of [4] applied to the subscheme \(\tilde{X}' = \mathbb{P}_m(k) \) allows us to contract \(X_0 \) to a point. That is, there exists a contraction

\[
f: X' \rightarrow X''
\]

such that the formalization of \(f \) along \(f(X_0) = f(X_0') U \cdots U f(X_0'^{r-1}) \) is a formal blowing up with center at the closed point \(f(X_0'^{r}) \) of \(X'' \). One concludes by induction on the number \(r \) of irreducible components of \(X_0 \).

3. The scheme of r-blowing ups and a theorem of boundedness

Let

\[
\tilde{x}(C_r) \longleftarrow X(C_r) \longrightarrow \tilde{x}(C_r')
\]

be two r-blowing ups, and \(I, I' \) be the respective sheaves of ideals defined by the reduced exceptional fibres. Denote by \(X_k, X'_k \), the subschemes defined respectively by \(I^{k+1}, I'^{k+1} \).

We want to prove the

Theorem 3.1. (Boundedness) The formal schemes \(\tilde{x}(C_r) \) and \(X'_k \) are isomorphic.

Proof: The conclusion is clear if we prove (1) for every r-blowing up

\[
l_k = k[T_0, \ldots, T_n]
\]

where \(m \) is the maximal ideal of \(k \).

It is clear that there exists an isomorphism \(\mathbb{P}_m \rightarrow \mathbb{P}_n \) defined by the sheaf automorphism \(\tilde{\tau} \) that induces \(\tau \). Let \(\tau \) be the blowing up at \(\tau(a) \) is another locally principal.

So the morphism

factors through the
Theorem 3.1 (Boundedness): For every \(r \) there exists a \(K \) such that the formal schemes \(\hat{X}(C_r) \) and \(\hat{X}(C'_r) \) are isomorphic if and only if the schemes \(X_K \) and \(X'_K \) are isomorphic.

Proof: The condition is obviously necessary for every \(K \). To see the sufficiency suppose the following \((\ast)\) is true:

\((\ast)\) for every positive integer \(r \) there exists a \(\lambda \) such that the \(r \)-th blowing up

\[
\hat{X}(C_r) \longrightarrow \hat{X} = \text{Sp } f(A),
\]

with \(A=k[[T_0, \ldots, T_m]] \), is the blowing up of an ideal \(\alpha \) of \(A \) such that

\[
m_\alpha \subseteq \alpha \subseteq A,
\]

where \(m \) is the maximal ideal of \(A \) and \(\pi_\alpha(\alpha_{\hat{X}(C_r)}) = \alpha'' \).

It is clear that there exists a positive integer \(K_1 \) such that

\[
m_\alpha \subseteq \alpha_{\hat{X}} \subseteq K_1
\]

for every \(r \)-blowing up \(\hat{X} \) of \(\hat{X} \) (It is enough to take \(K_1 = r! \) and to prove it by induction on \(r \)). Let \(K = (\lambda + 1)K_1 \). Suppose

\[
\phi: X_K \cong X'_K
\]

is an isomorphism. This induces another isomorphism between the subschemes defined by the sheaves \(m^{\lambda+1}\alpha_{\hat{X}} \) and \(m^{\lambda+1}\alpha_{\hat{X}}' \). By taking global sections one gets an automorphism \(\tau \) of \(\text{Spec}(A/m^{\lambda+1}) \). Let \(\tau \) be an automorphism of \(\text{Spec}(A) \) that induces \(\tau \). Let \(\alpha \) be an ideal of \(A \) such that

\[
\pi_\alpha(\alpha_{\hat{X}(C_r)}) \longrightarrow \hat{X}
\]

is the blowing up along \(\alpha \), and which satisfies the condition \((\ast)\) above, then \(\pi_\alpha(\alpha_{\hat{X}(C_r)}) \) is another ideal in \(\hat{X} \) such that

\[
\pi_\alpha(\alpha_{\hat{X}(C_r)}) = \phi(\alpha_{\hat{X}'(C_r)}).
\]

So the morphism

\[
\hat{X}(C_r) \longrightarrow \text{Sp } f(A)
\]

factors through the \(r \)-blowing up

\[
\hat{X}(C'_r) \longrightarrow \text{Sp } f(A) \longrightarrow \text{Sp } f(A),
\]

193
that is, there exists a morphism

\[f : \hat{X}(C_r) \longrightarrow \hat{X}(C'_r) \]

such that

\[\pi_r = \tau \circ \pi'_r \circ f \]

One concludes that \(f \) is an isomorphism, because \(X(C_r) \) and \(X(C'_r) \) are \(r \)-blowing ups.

To finish one has only to prove (*). Let \(X \) be the spectrum of a local \(k \)-algebra of finite type. One has:

Theorem 3.2 (Representability): There exists a noetherian scheme of finite type over \(k \) and a blowing up

\[\hat{\pi}_n : \hat{\pi} \longrightarrow X \times \Delta_n \]

such that for every closed point \(x_n \in \Delta_n \) the blowing up of \(X \) induced by \(\pi_n \) on the closed subscheme \(X = X \times x_n \) of \(X \times \Delta_n \) is an \(n \)-blowing up of \(X \) and every \(n \)-blowing up is obtained in this way. Moreover, if \(\mathcal{P}_{x \times \Delta_n}^X \) is the sheaf of ideals of the subscheme \(x \times \Delta_n \) of \(X \times \Delta_n \), then the blowing up \(\hat{\pi}_n \) is defined by a sheaf of ideals \(\mathcal{P} \) such that

\[\mathcal{P}_{x \times \Delta_n}^X \subseteq \mathcal{P} \subseteq \mathcal{P}_{x \times \Delta_n} \]

Proof: We will only give the construction of \(\Delta_n \). The properties of \(\Delta_n \) follow from the general properties of a blowing up and the definition of \(\Delta_n \).

Firstly it is easy to see that if

\[\pi : \hat{\pi}' \longrightarrow X' \]

is a blowing up of schemes over \(Y \), and \(Z \) is a flat scheme over \(Y \), and

\[X'_Z = X' \times_Y Z \longrightarrow Z \]

the map obtained by base change, then the blowing up that \(\pi n \) induces on \(X'_Z \) is precisely

Construction of \(\Delta_n \)

be the blowing up of

be the diagonal, and

be the blowing up of

by blowing up the closed subscheme \(\pi_n(\Delta_n) \) over \(\pi_n(\Delta_n) \) of \(\pi_n(\Delta_n) \)

is the diagonal. It

(with \(\Delta_1 = x \)) by a

is an \(n \)-immersion of

\((1 \leq n) \). Let

be the closed immersion

where \(\pi_X, \pi_n \) are
\[\bar{\mathcal{I}}_{i} \times \mathcal{V}_{j} \xrightarrow{\bar{\pi}_{i} \times \bar{\pi}_{j}} \bar{\mathcal{N}} \times \mathcal{N} \]

Construction of \(\Delta_{n} \): let

\[\pi_{1} : \bar{\mathcal{N}} \rightarrow \mathcal{N} \]

be the blowing up of \(\mathcal{N} \) at its closed point and \(\Delta_{2} \) the exceptional fibre. Let

\[\iota_{2} : \Delta_{2} \hookrightarrow \bar{\mathcal{N}} \times \Delta_{2} \]

be the diagonal, and

\[\pi_{2} : \bar{\mathcal{N}} \rightarrow \bar{\mathcal{N}} \times \Delta_{2} \]

be the blowing up of \(\bar{\mathcal{N}} \) along \(\iota_{2}(\Delta_{2}) \). Inductively one defines

\[\pi_{n} : \bar{\mathcal{N}} \rightarrow \bar{\mathcal{N}} \times \Delta_{n} \]

by blowing up the closed subscheme \(\iota_{n} : \bar{\mathcal{N}}_{n-1} \hookrightarrow \bar{\mathcal{N}}_{n-1} \times \Delta_{n} \), and \(\Delta_{n+1} \) as the fibre over \(\iota_{n}(\Delta_{n}) \) of \(\pi_{n} \) and where

\[\iota_{n+1} : \Delta_{n+1} \hookrightarrow \bar{\mathcal{N}} \times \Delta_{n+1} \]

is the diagonal. It is clear that \(\bar{\mathcal{N}}_{n} \) is obtained from

\[R = \mathcal{N} \times \Delta_{1} \times \ldots \times \Delta_{n} \]

(with \(\Delta_{1} = \mathcal{N} \)) by a sequence of blowing ups. One also has projections

\[f_{i} : \Delta_{n} \rightarrow \Delta_{1} \]

(\(1 \leq n \)). Let

\[f : \mathcal{N} \times \Delta_{n} \rightarrow \mathcal{N} \times \Delta_{1} \times \ldots \times \Delta_{n} \]

be the closed immersion defined by

\[f = (\pi_{\mathcal{N}} \circ \Delta_{n}, \ldots, f_{n} \circ \Delta_{n}) \]

where \(\pi_{\mathcal{N}}, \pi_{\Delta_{n}} \) are the projections on the factors (with \(f_{n} = \text{Id}_{\Delta_{n}} \)). Consider

\[\xymatrix{ \bar{\mathcal{N}} \ar[r] \ar[d]^{\bar{\pi}_{n}} & \bar{\mathcal{N}} \ar[d]^{\bar{\pi}} \\ \mathcal{N} \times \Delta_{n} \ar[r] & R } \]
where \(\pi \) is the blowing up constructed above and \(\pi_n \) the one induced on \(X \times \Delta_n \) by \(\pi \).

(*) Follows from this, because if

\[
\pi: \tilde{X} \longrightarrow X
\]
is a blowing up, there exists a closed point \(x_n \in \Delta_n \) such that

\[
\begin{array}{ccc}
\tilde{X} & \xrightarrow{\pi} & X \\
\downarrow & & \downarrow \\
\tilde{x} & \xrightarrow{\tilde{\pi}} & x
\end{array}
\]

where \(\tilde{\pi} \) is the blowing up induced by \(\tilde{\pi} \). But \(\tilde{\pi} \) is defined by the blowing up of the sheaf of ideals \(\mathcal{A} \) such that

\[
p_{\pi_n}^\mathcal{A} \subseteq \mathcal{A} \subseteq p_{\pi_n}^X.
\]

Restricting everything to \(x = x \times x_n \) one has that \(\pi \) is defined by the blowing up of a sheaf of ideals \(\mathcal{A} \) such that

\[
\mathcal{A}^\mathcal{O}_X \subseteq \mathcal{A} \subseteq \mathcal{O}_X.
\]

Moreover, one can easily see that \(\beta = \pi_*(\mathcal{O}_\tilde{X}) \) defines the same blowing up as \(\alpha \), and it verifies

\[
\pi_*(\beta \mathcal{O}_\tilde{X}) = \pi_*(\alpha \mathcal{O}_\tilde{X}) = \beta,
\]

with which one concludes the proof of condition (*).

Observation: The scheme \(\Delta_n \) parametrizes the analytic branches in \(\tilde{X} \) up to order \(n \) modulo the relation:

\(C \equiv C' \) if and only if the both direct the same \(n \)-blowing up.

4. Classification theorem

Let \(\{r_n\}_{n=0}^\infty \) be the multiplicity sequence of an embedded branch in \(X \). We will suppose all branches have multiplicity sequence equal to \(\{r_n\}_{n=0}^\infty \). Let

\[
\pi_r: \tilde{X}(C_r) \longrightarrow \text{Sp} f(A),
\]

with \(A = k[[T_0, \ldots, T_m]] \), be the \(r \)-blowing up of \(X \) in the direction of a branch \(C \).
embedded in X. We will denote by X_0, the exceptional reduced fibre of π, by I the sheaf of ideals defining X_0 in $\tilde{X}(C_r)$ and by I^{n-1} the conormal sheaf. Let X_n be the closed subscheme of $\tilde{X}(C_r)$ defined by I^{n-1}.

To a given branch C embedded in X, we associate the scheme X_1. Note that the pair (X_0, L) is part of the information X_1 carries which we have defined as the equisingularity of C as embedded in X. In this paragraph, we want to classify embedded branches with the same, up to isomorphism, associated scheme X_1. So we will fix the scheme X_1. The pair (X_0, L) is also fixed and we will also fix, as a reference to classify, the formal scheme $\tilde{X}(C_r)$.

By theorem (1.4), one knows that to classify, up to analytic equivalence, the branches embedded in X with multiplicity sequence $\{r_n\}_{n=0}^{\infty}$ and given associated pair (X_0, L) amounts to classifying isomorphism classes of formal schemes obtained by r-blowing ups of X ($r = h + 2 \sum_{i=0}^{\infty} r_i(r_i - 1)^2$) such that their associated pair is (X_0, L). But by the theorem of equivalence (section 2) to classify these classes of formal schemes is the same as to classify the isomorphism classes of formal schemes \tilde{X}' which contain X_0 as the closed subscheme, which are complete along X_0 and such that the conormal sheaf to X_0 in \tilde{X}' is isomorphic to L and $\mathcal{O}_{\tilde{X}'}$ is locally isomorphic to $\mathcal{O}_{\tilde{X}}$ on X_0. Besides, by the boundedness theorem (3.1), a formal scheme such as X' determined, up to isomorphism, by the closed subscheme X'_K of \tilde{X}', where X'_K is the subscheme defined by the sheaf of ideals I', I' being the defining sheaf of X_0 in \tilde{X}' (and K is a positive integer whose existence is guaranteed by theorem 3.1).

So, it is enough to classify the schemes X'_K so obtained.

Consider now, for each pair of positive integers $n \geq m$, the sheaf $\mathcal{Aut}_{X'_{m,n}}$ of groups over X_0 consisting of local automorphisms of the scheme X_n which restrict to the identity on the subscheme X_m.

Denote by

$$\rho_{X, n}^m: \mathcal{Aut}_{X, n} \rightarrow \mathcal{Aut}_{X, m}$$

(for $n \geq m \geq 1$) the natural restriction maps.

Lemma 4.1. For each $r > 1$, the sheaf of groups $\mathcal{Aut}_{X, n}^r$ is canonically isomorphic to the sheaf of groups

$$\mathcal{Der}_k(\mathcal{O}_{X, n}, \mathcal{I}^n)$$

In particular

$$\mathcal{Aut}_{X, n}^r \rightarrow \mathcal{Aut}_{X, m}^r$$

is a subsheaf contained in the center of this last sheaf of groups.

197
Proof: The map
\[\phi: \text{Aut}_{X_{n-1}}(X_n) \to \text{Der}_k(\mathcal{O}_{X_1}, L^n) \]
defined by
\[\phi(\tau) = \tau - \text{Id} = \tau_0 \]
is a morphism of sheaves of groups. The image of \(\phi \) is contained in
\[j_* \text{Der}_k(\mathcal{O}_{X_1}, L^n) \]
where
\[j: X_1 \to X_n \]
is the canonical injection. Conversely, given a derivation \(D \in \text{Der}_k(\mathcal{O}_{X_1}, L^n) \) one defines \(\phi^{-1}(D) \) to be
\[\phi^{-1}(D) = \text{Id} + j_* D = \tau_0 D . \]

It is easily seen that \(\tau_0 \) is an automorphism of \(X_n \) giving the identity on \(X_1 \). The rest follows from this.

Corollary 4.2. The sheaves of groups \(\text{Aut}_{X_1}(X_n) \) for \(n > 1 \) have resolutions by sheaves of coherent \(\mathcal{O}_{X_0} \)-modules of the form
\[\text{Der}_k(\mathcal{O}_{X_1}, L^n) \]
for \(2 \leq h \leq n \). More precisely, the sequences
\[(n) \quad 0 \to \text{Der}_k(\mathcal{O}_{X_1}, L^n) \overset{i_n}{\to} \text{Aut}_{X_1}(X_n) \to \text{Aut}_{X_1}(X_{n-1}) \to 0 \]
are exact, where \(i_n \) is defined as in the above lemma, identifying
\[\text{Der}_k(\mathcal{O}_{X_1}, L^n) = \text{Aut}_{X_{n-1}}(X_n) . \]

To simplify the notation, let us write
\[D^n = \text{Der}_k(\mathcal{O}_{X_1}, \mathcal{O}_{X_0}) \otimes L^n \]
\[A^n = \text{Aut}_{X_1}(X_n) \]
\[G^n = L \otimes L^3 \otimes \ldots \otimes L^n . \]

Corollary 4.3: For every \(n \) there exists a quotient \(H_1 \) of the abelian group
\[H_1(X_0, D^n \otimes X_0 G^n) \]
and a map
\[\chi \]
which identifies with the subset of

Proof: By induction

and \(f_1 = 0 \) by applying \(\text{Der}_k(\mathcal{O}_{X_1}, L^n) \) gives an exact sequence
\[B = H_1 \]
(see [1]). The first equality holds on \(H_1(A^n) \). The rest follows from this.

So

We define

where

is the natural projection

where \(g : M_{n-1} \to \text{complement} \).

As the sheaves of groups, the set
and a map

\[f_n : M_n \rightarrow H^2(X_0, D^0 \otimes \mathcal{O}_n) \]

which identifies

\[H^1(X_0, \mathcal{A}^n) \]

with the subset of \(M_n \) defined the elements \(c \in M_n \) such that \(f_n(c) = 0 \).

Proof: By induction on \(n \). For \(n = 2 \) one has

\[M_1 = H^1(X_0, D^0) \]

and \(f_1 = 0 \) by applying lemma 5.1. If \(n > 2 \) the cohomology sequence associated with \((n)\) gives an exact sequence

\[B = H^1(D^n)/\partial H^0(A^{n-1}) \rightarrow H^1(A^n) \rightarrow H^1(A^{n-1}) \otimes \delta^n \rightarrow H^2(D^n) \]

(see [1]). The first term on the left is an abelian group and acts freely on the left on \(H^1(A^n) \). The orbits of this action are the fibres of

\[\text{Im}(\tau^n) = (\delta^n)^{-1}(0). \]

So

\[H^1(A^n) = \text{Im}(\tau^n) \times B \subset H^1(A^{n-1}) \times B \subset M_{n-1} \times B. \]

We define

\[f_{n-1} : M_n \rightarrow H^2(D^n) \otimes H^2(D^0 \otimes \mathcal{O}_{n-1}) = H^2(D^0 \otimes \mathcal{O}_n) \]

to be

\[f_{n-1} = f_{n-1} \circ \pi, \]

where

\[\pi : M_{n-1} \times B \rightarrow M_{n-1} \]

is the natural projection, and

\[f_{n-1} = f_{n-1} + g \]

where \(g : M_{n-1} \rightarrow B \) is equal to \(\delta^n \) on \(H^1(A^{n-1}) \) and is zero on the complement.

As the sheaves \(\mathcal{O}_{X_K} \) are locally isomorphic to \(\mathcal{O}_{X_K} \), they are classified by the set

\[H^1(X_1, \text{Aut}_{X_1}(X_K)) \]
(see [1]). The quotient of this H^1 by the action of the group $\text{Aut}(X_1)$ classified the schemes X'_K which contain X_1 as a closed subscheme, and whose structure sheaf $\mathcal{O}_{X'_K}$ is locally isomorphic to \mathcal{O}_{X_K}.

From Corollary 4.3 and the considerations at the beginning of this paragraph the main theorem of this introduction follows easily.

REFERENCES