The spectrum of hypersurface singularities

J.M.M. Steenbrink
Mathematical Institute
Catholic University of Nijmegen
6525 ED Nijmegen
The Netherlands

Introduction

Many results about the topology of complex hypersurface singularities have a Hodge-theoretic counterpart. The monodromy theorem for isolated singularities combined with the Hodge filtration on the vanishing cohomology have led to the notion of the spectrum (\cite{A1}, \cite{A4}, \cite{V1}). The spectrum is a powerful invariant, giving necessary conditions for adjacency of singularities. In this paper, we define the spectrum for arbitrary (i.e., not necessarily isolated) hypersurface singularities and investigate some of its properties. In particular we conjecture a Thom-Sebastiani type theorem about the spectrum. This formula has recently been proven by M. Saito using the description of the mixed Hodge structure on the cohomology of the Milnor fibre via his theory of mixed Hodge modules \cite{S1}. Moreover, we investigate the behaviour of the spectrum under certain deformations. We consider a hypersurface (f = 0) in \(\mathbb{C}^{m+1}\) whose singular locus is of dimension one and compare this with a hypersurface (f + \(e^s\) = 0) where \(e^s\) is sufficiently small and \(e^s\) is a linear form which is not tangent to any component of the critical locus of f. We conjecture a formula for the spectrum of f + \(e^s\) which generalizes a formula of Yomdin \cite{Y1} for the Milnor number. We are able to prove this formula in certain cases, which are listed in \S 2. M. Saito has recently given a proof in the general case \cite{S2}. The corresponding formula for the characteristic polynomial of the monodromy has been proven by D. Stienstra \cite{S1}.

As an application, we give an example, found together with J. Stevens, of two isolated plane curve singularities which have different topological types but equal spectra. This gives a negative answer to a question mentioned by M. Neumann \cite{N1}, namely whether the real monodromy and Seifert form determine the (embedded) topology of an isolated complex hypersurface singularity. We also give an example in dimension two, which shows that even the topological type of the hypersurface singularity itself is not determined by these data. A detailed discussion of this will appear elsewhere.

It should be remarked that the spectrum of the affine cone over a
projective hypersurface with only isolated singular points is independent of the position of these points. On the other hand, the Betti numbers of the Milnor fibre do depend on this position in general (a phenomenon, usually indicated by the word ‘defect’). A. Disca communicated to me, that he has a method to compute exact Betti numbers for projective hypersurfaces with arbitrary isolated singularities.

The author is indebted to Theo de Jong, Duco van Straten, Lê Dũng Tráng and Steve Zucker for stimulating discussions. He also thanks Dirk Siersma, M. Saito and Theo de Jong for pointing out some errors in an earlier draft of this paper.

§1. Spectra of hypersurface singularities

A spectrum is a set of rational numbers, counted with certain multiplicities. These multiplicities may be negative. Let \(\text{Sp} \) be the free abelian group on generators \((\alpha) \), \(\alpha \in \mathbb{Q} \). A typical element of \(\text{Sp} \) will be denoted as \(\sum \alpha \). We will consider spectra as elements of \(\text{Sp} \).

Let \(\Sigma \) denote the category whose objects are \(\text{C}(t) \)-modules of finite length equipped with \(t \)-stable decreasing filtrations on which \(t \) acts as an automorphism of finite order and whose morphisms are \(\text{C}(t) \)-linear maps which are compatible with the given filtrations. A typical object of \(\Sigma \) will be denoted as \((H,F,\gamma) \) where \(F \) is the filtration and \(\gamma \) the automorphism given by the action of \(t \). In the main application, \(H \) is the cohomology group of the Milnor fibre of an isolated hypersurface singularity, \(F \) is its Hodge filtration and \(\gamma \) corresponds to the action of the semisimple part of the monodromy (the monodromy itself is not compatible with \(F \)). A sequence

\[
0 \rightarrow H' \rightarrow H' \rightarrow H' \rightarrow 0
\]

in \(\Sigma \) will be called exact if the underlying sequence of vector spaces is exact and if \(\alpha \) and \(\beta \) are strictly compatible with the filtrations, i.e. \(\alpha(H') \cap F^pH' = \alpha(F^nH') \), \(\beta(F^pH') = \beta(F^nH') \) for all \(p \). With this concept of exact sequence, \(\Sigma \) becomes an exact category (see [Q]).

The group \(\text{Sp} \) can be considered as the Grothendieck group of \(\Sigma \) in the following way. Fix an integer \(n \) and let \((H,F,\gamma) \) be an object of \(\Sigma \). Observe that \(\gamma \) acts on the subquotients \(G^pF(H) = F^p/F^{n+1} \). One defines \(\text{Sp}(H,F,\gamma) \) as follows. Define rational numbers \(\zeta_1, \ldots, \zeta_m \), where \(\zeta(p) = \dim G^pF(H) \), by

\[
\zeta(p) = \frac{1}{p} \sum \frac{1}{p} \zeta(p).
\]

Then

\[
\text{Sp}(H,F,\gamma) = \sum \frac{1}{p} \zeta(p).
\]

For every integer \(n \) the map \(\text{Sp} \) induces an isomorphism between \(\text{Ker}(\alpha) \) and \(\mathbb{Z} \). Changing \(n \) into \(n+1 \) or shifting the filtration index by \(-1 \) corresponds to a shift \((\alpha) \rightarrow (\alpha+1) \) in \(\text{Sp} \).

Let \(\phi : (\mathbb{C}^*)^n \rightarrow (\mathbb{C},0) \) be a non-zero holomorphic function germ. Its Milnor fibre \(X(\phi) \) is defined by

\[
X(\phi) = \{ z \in \mathbb{C}^n : |z| < 1 \text{ and } \phi(z) = 0 \}
\]

for \(0 < |t| < 1 \). The cohomology groups \(H^i(X(\phi)) \) carry a canonical mixed Hodge structure (see [St2] for the case that \(\phi \) has an isolated critical point at \(0 \) and [Na414 for the general case). The semisimple part \(\text{H}^\text{ss} \) of the monodromy acts as an endomorphism of these mixed Hodge structures. In particular, it preserves the Hodge filtration \(F \).

We define the spectrum of \(\phi \) by

\[
\text{Sp}(\phi) = \sum \frac{1}{p} \zeta(p).
\]

In the case of isolated singularities, this reduces to the existing definition, because then \(H^i(X(\phi)) = 0 \) for \(k \neq n \), as \(X(\phi) \) has the homotopy type of a wedge of \(n \)-spheres.

Examples. For quasi-homogeneous isolated hypersurface singularities the spectrum can be calculated in the following way. Choose a basis \((z^a)_{a \in A} \) of monomials for the Artinian ring \(Q = \mathbb{Z}[z_0, \ldots, z_n]/(\beta_0, \ldots, \beta_\ell) \). For \(a \in A \) put \(w(a) = \sum q_i a_i \), where \(q_i = 0, \ldots, n \) and \(w(a) \) are the weights, normalized in such a way that \(a \) has degree one. Then \(\text{Sp}(\phi) = \sum w(a) \) (see [St3] for a proof). In particular we obtain for the simple singularities:

<table>
<thead>
<tr>
<th>type</th>
<th>normal form</th>
<th>spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>(z_0^2 + z_1^2)</td>
<td>(1, 1)</td>
</tr>
<tr>
<td>D_n (n)</td>
<td>(z_0^2 + z_1^2 + \cdots + z_n^2)</td>
<td>(1, 1, \ldots, 1)</td>
</tr>
<tr>
<td>E_6</td>
<td>(z_0^2 + z_1^2 + z_2^2)</td>
<td>(1, 1, 1, 1, 1)</td>
</tr>
<tr>
<td>E_7</td>
<td>(z_0^2 + z_1^2 + z_2^2 + z_3^2)</td>
<td>(1, 1, 1, 1, 1, 1)</td>
</tr>
<tr>
<td>E_8</td>
<td>(z_0^2 + z_1^2 + z_2^2 + z_3^2 + z_4^2)</td>
<td>(1, 1, 1, 1, 1, 1, 1)</td>
</tr>
</tbody>
</table>

This completes the spectrum of hypersurface singularities.
projective hypersurface with only isolated singular points is independent of the position of these points. On the other hand, the Betti numbers of the Milnor fibre do depend on this position in general (a phenomenon, usually indicated by the word ‘defect’). A. Discrepancies communicated to me, that he has a method to compute exact Betti numbers for projective hypersurfaces with arbitrary isolated singularities.

The author is indebted to Theo de Jong, Duco van Straten, Lê Dũng Tráng and Steve Zucker for stimulating discussions. He also thanks Dirk Siersma, H. Saito and Theo de Jong for pointing out some errors in an earlier draft of this paper.

§1. Spectra of hypersurface singularities

A spectrum is a set of rational numbers, counted with certain multiplicities. These multiplicities may be negative. Let \(F = \mathbb{Z}_{\geq 0} \), the free abelian group on generators \((a) \), \(a \in \mathbb{Q} \). A typical element of \(F \) will be denoted as \(\sum_n n(a) \). We will consider spectra as elements of \(F \).

Let \(\mathcal{E} \) denote the category whose objects are \(\mathcal{C}[t] \)-modules of finite length equipped with \(t \)-stable decreasing filtrations on which \(t \) acts as an automorphism of finite order and whose morphisms are \(\mathcal{C}[t] \)-linear maps which are compatible with the given filtrations. A typical object of \(\mathcal{E} \) will be denoted as \((H,F,\gamma) \) where \(F \) is the filtration and \(\gamma \) the automorphism given by the action of \(t \). In the main application, \(H \) is the cohomology group of the Milnor fibre of an isolated hypersurface singularity, \(F \) is its Hodge filtration and \(\gamma \) corresponds to the action of the semisimple part of the monodromy (the monodromy itself is not compatible with \(F \)). A sequence

\[
0 \to H' \xrightarrow{a} H \xrightarrow{b} H'' \to 0
\]

in \(\mathcal{E} \) will be called exact if the underlying sequence of vector spaces is exact and if \(a \) and \(b \) are strictly compatible with the filtrations, i.e., \(a(H') \cap F H'' = a(F H') \cap F H'' = a(F H') \cap F H'' = b(F H') \) for all \(p \). With this concept of exact sequence, \(\mathcal{E} \) becomes an exact category (see [?]).

The group \(\mathcal{E} \) can be considered as the Grothendieck group of \(\mathcal{E} \) in the following way. Fix an integer \(n \) and let \((H,F,\gamma) \) be an object of \(\mathcal{E} \). Observe that \(\gamma \) acts on the subquotients \(Gr_p^F(H) = F^F/\gamma F^{p+1} \). One defines \(Sp(H,F,\gamma) \) as follows. Define rational numbers \(q_0, \ldots, q_n \), where \(q(p) = \dim Gr_p^F(H) \), by

\[
n - p - 1 < q_p = n - p;
\]

\[
det(1 - \gamma, Gr^F_p) = \prod_{j=1}^{n} (1 - e^{-2i \pi q_p / j}).
\]

Then

\[
Sp(H,F,\gamma) := \sum_{q_0, \ldots, q_n} q_0^n q_1^{-1} \ldots q_n^{-1}.
\]

For every integer \(n \) the map \(Sp \) induces an isomorphism between \(K_n(\mathcal{E}) \) and \(F \). Changing \(n \) into \(n+1 \) or shifting the filtration index by \(-1 \) corresponds to a shift \(\gamma \to (\alpha \gamma) \) in \(F \).

Let \(f : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}, 0) \) be a non-zero holomorphic function germ. Its Milnor fibre \(X(f) \) is defined by

\[
X(f) = \{ z \in \mathbb{C}^{n+1} \mid |z| < \eta \text{ and } f(z) = 0 \},
\]

for \(0 < |t| < \eta \) and \(f(z) = t \). The cohomology groups \(H^k(X(f)) \) carry a canonical mixed Hodge structure (see [St2] for the case that \(f \) has an isolated critical point at \(0 \) and [Na] for the general case). The semisimple part \(T_\gamma \) of the monodromy acts as an automorphism of these mixed Hodge structures.

In particular, it preserves the Hodge filtration \(F \).

We define the spectrum of \(f \) by

\[
Sp(f) := \sum_{q_0, \ldots, q_n} (-1)^{n-q} Sp(H^k(X(f), F, T_\gamma)).
\]

In the case of isolated singularities, this reduces to the existing definition, because then \(H^k(X(f)) = 0 \) for \(k \neq n \), as \(X(f) \) has the homotopy type of a wedge of \(n \)-spheres.

Examples. For quasi-homogeneous isolated hypersurface singularities the spectrum can be calculated in the following way. Choose a basis \((e_1, \ldots, e_n) \) of monomials for the Artinian ring \(R = \mathbb{C}[z_0, \ldots, z_n]/(\partial f, \ldots, \partial f) \). For \(e \in A \) put

\[
w(e) = \prod_{i=0}^n (q_i + 1) \nu_i - 1 \text{ where } \nu_0, \ldots, \nu_n \in \mathbb{Q} \text{ are the weights, normalized in such a way that } f \text{ has degree one. Then } Sp(f) = \sum_{e \in A} w(e) \text{ (see [St2] for a proof). In particular we obtain for the simple singularities:}
\]

<table>
<thead>
<tr>
<th>type</th>
<th>normal form</th>
<th>spectrum</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_k</td>
<td>(x_0^{q_0 + 1} x_1^{q_1 - 1} \ldots x_n^{q_n - 1})</td>
<td>(\sum_{i=1}^{n} (\frac{n}{2} + 1)_{(i-1)})</td>
</tr>
<tr>
<td>D_k</td>
<td>(x_0^{q_0} x_1^{q_1} \ldots x_n^{q_n})</td>
<td>(\sum_{i=1}^{n} (\frac{n}{2} - \frac{1}{2})_{(i-1)})</td>
</tr>
<tr>
<td>E_6</td>
<td>(x_0^{q_0} x_1^{q_1} x_2^{q_2} \ldots x_6^{q_6})</td>
<td>(\sum_{i=1,6} (1,4,6,7,8,11))</td>
</tr>
<tr>
<td>E_7</td>
<td>(x_0^{q_0} x_1^{q_1} x_2^{q_2} \ldots x_7^{q_7})</td>
<td>(\sum_{i=1,7} (1,5,6,7,8,10,11,12))</td>
</tr>
<tr>
<td>E_8</td>
<td>(x_0^{q_0} x_1^{q_1} x_2^{q_2} \ldots x_8^{q_8})</td>
<td>(\sum_{i=1,8} (1,5,6,7,8,9,10,12,13,17))</td>
</tr>
</tbody>
</table>

where \(a_{n-1, \ldots, n} = \frac{1}{n!!} \).
We define the convolution operation \(\ast \) on \(\mathcal{F} \) as the bilinear mapping
\[
\ast : \mathcal{F} \times \mathcal{F} \longrightarrow \mathcal{F}
\]
given on generators by
\[
(a) \ast (b) = (a \ast b) + 1
\]
Each pair of germs \(f : (C^{n+1}, 0) \longrightarrow (C, 0) \), \(g : (C^{m+1}, 0) \longrightarrow (C, 0) \) defines a germ \(f \circ g : (C^{n+1} \times C^{m+1}, (0, 0)) \longrightarrow (C, 0) \) by \(f \circ g(z, w) = f(z) \cdot g(w) \). If \(f \) and \(g \) have an isolated singularity, the same is true for \(f \circ g \), and, by the Thom-Sebastiani theorem, \(\mu(f \circ g) = \mu(f) + \mu(g) \) where \(\mu \) denotes the Milnor number.

Theorem. Let \(f, g \) be as above. Then
\[
\text{Sp}(f \circ g) = \text{Sp}(f)^{\ast \mu} \text{Sp}(g)
\]
See [VI]. The 7.3 and also [SS] for the case of isolated singularities. The general case is due to H. Sallo (private communication). We may even include the case that \(f \) and/or \(g \) are zero; just define the spectrum of the zero function in \(n \) variables to be \((-1)\mu(n)\).

In the isolated singularity case, the spectrum is invariant under the reflection of \(\mathcal{F} \) defined by \(a \mapsto \mu(a) = (-1)^{n-a} \). The examples of \(A_n, T_{n,m,\infty} \) above show that this need not be true in general.

For isolated hypersurface singularities \((V, 0) \) the geometric genus \(p_g(V, 0) \) is related to the spectrum by \(p_g = \text{deg}_{(1,0)} \text{Sp}(f) \) where \(f \) is a defining function. Van Straten [VI] has generalized this notion to the case of weakly normal surface singularities and verified a similar formula.

\section{2. Functions with a one-dimensional critical locus}

Let \(f : (C^{n+1}, 0) \longrightarrow (C, 0) \) be a holomorphic function germ. The critical locus \(\Sigma \) of \(f \) is the set of common zeros of the partial derivatives of \(f \) or, more precisely, the germ at 0 of this set. By Sard's theorem, \(\Sigma \subseteq f^{-1}(0) \). We consider germs \(f \) for which \(\Sigma \) is of dimension 1.

Let \(\Sigma_1, \ldots, \Sigma_k \) be the irreducible components of \(\Sigma \). For each \(i \) we choose a point \(P_i \in \Sigma_i \), and a sphere \(U_i \) about \(P_i \) transverse to \(\Sigma_i \). Let \(g_i = f|_{U_i} : (U_i, P_i) \longrightarrow (C, 0) \). Then \(g_i \) is an isolated hypersurface singularity. Its analytic type will in general depend on the choices which have been made. However, two different choices give rise to germs which are \(\mu \)-homotopic, i.e. which are connected by a family with constant Milnor number. Therefore the \(\mu \)-class of \(g_i \) is an invariant of \(f \); it is called the transverse type of \(f \) along \(\Sigma \) (cf. [V] or [L1] (1.2.1) and (1.2.2)). Because the spectrum of an isolated singularity depends only on its \(\mu \)-class [VI], the spectrum of \(g_i \) is
For more spectra of isolated singularities from Arnol’d’s lists see [G].

Let $f: \mathbb{C}^n \rightarrow \mathbb{C}$ be given by $f(x,y,z) = x^m y^n (\text{type } A_{m,n})$ in the notation of [St11]. Then $X(f)$ is homeomorphic to the affine variety $xy = 1$ in \mathbb{C}^2, i.e. to $\mathbb{C} \times \mathbb{C}$, and the monodromy is the identity. We obtain that $\text{Sp}(f) = (1).$

Let $f: \mathbb{C}^3 \rightarrow \mathbb{C}$ be given by $f(x,y,z) = xyz (\text{type } T_{0,0,0}).$ The Milnor fibre of f is diffeomorphic to $\mathbb{C} \times \mathbb{C}$ and the mixed Hodge structure on $H^1(X(f))$ is purely of type $(1,1)$ for $i = 0, 1$ and 2. The monodromy operator is the identity. Hence we obtain

$$\text{Sp}(f) = (0) = (2,1).$$

Let $f: \mathbb{C}^3 \rightarrow \mathbb{C}$ be a germ and define $g: (\mathbb{C}^n \setminus 0) \rightarrow \mathbb{C}$ by $g(z_1, \ldots, z_n) = f(z_1, \ldots, z_n).$ If $\text{Sp}(f) = \sum_a n_a (a)$, then $\text{Sp}(g) = \sum_a n_a (a+1)$.

We recall a few properties of the spectrum for isolated hypersurface singularities. It is convenient to introduce the following notions. For any subset B of \mathbb{N} or \mathbb{R} we obtain a group homomorphism

$$\text{deg}_B: \mathbb{N}^\mathbb{N} \rightarrow \mathbb{R}$$

given by

$$\text{deg}_B(\sum_a n_a (a)) = \sum_a n_a (a).$$

We define $\mu(f) = \text{deg}_0 \text{Sp}(f)$; for isolated singularities this is the Milnor number.

The semicontinuity property of the spectrum ([Vi], [St4]) can be formulated as follows. Let $\{f_t\}_{t \in \mathbb{A}}$ be a family of functions parameterized by a disc such that f_0 has an isolated critical point at 0 with $f_0(0) = 0$. Suppose that there are continuous maps $\chi_i: (0,1] \rightarrow \mathbb{C}^m$, $i = 1, \ldots, r$, such that the $\chi_i(t)$ are critical points of f_{t} with the same critical value and that $\lim_{t \downarrow 0} \chi_i(t) = 0$. We can compare the spectra of the germ of f_0 at 0 and of the f_t at the $\chi_i(t)$. The result is:

Theorem. For any half-open interval B of length one in \mathbb{R}

$$\text{deg}_B \text{Sp}(f_0) \leq \sum_{i=1}^{r} \text{deg}_B \text{Sp}(f_t, \chi_i(t)).$$

It would be interesting to have such a semicontinuity result for certain deformations of non-isolated singularities too. As an important example, consider a surface singularity in \mathbb{C}^2 which is weakly normal [Vi4], i.e. which has generically only ordinary double curves. Consider a deformation which admits a simultaneous normalization. By [Li-Vi] this is equivalent to the condition that the singular locus varies in a flat way. Under these conditions the spectrum should behave semicontinuously.

The Spectrum of Hypersurface Singularities

We define the convolution operation \ast on \mathfrak{F} as the bilinear mapping

$$\ast: \mathfrak{F} \times \mathfrak{F} \rightarrow \mathfrak{F}$$

given on generators by

$$(a) \ast (b) = (a + b + 1).$$

Each pair of germs $f: (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}, 0), g: (\mathbb{C}^m, 0) \rightarrow (\mathbb{C}, 0)$ defines a germ $f \ast g: (\mathbb{C}^n \times \mathbb{C}^m, (0,0)) \rightarrow (\mathbb{C}, 0)$ by $(f \ast g)(z,w) = f(z) \ast g(w)$. If f and g have an isolated singularity, the same is true for $f \ast g$, and, by the Thom-Decker theorem, $\mu(f \ast g) = \mu(f) \mu(g)$ where μ denotes the Milnor number.

Theorem. Let f, g be as above. Then

$$\text{Sp}(f \ast g) = \text{Sp}(f) \ast \text{Sp}(g).$$

See [Vi], Thm 7.3 and also [Si] for the case of isolated singularities. The general case is due to H. Salz [private communication]. We may even include the case that f and/or g are zero: just define the spectrum of the zero function in n variables to be $(-1)^n(n)$.

In the isolated singularity case, the spectrum is invariant under the reflection of \mathfrak{F} defined by $\mu(f) \mapsto -n-1+\mu(f)$. The examples of A_n and $T_{m,m}$ above show that this need not be true in general.

For isolated hypersurface singularities $(V,0)$ the geometric genus $p_g(V,0)$ is related to the spectrum by $p_g = \text{deg}_{-1,0} \text{Sp}(f)$ where f is a defining function. Van Straten [Vi4] has generalized this notion to the case of weakly normal surface singularities and verified a similar formula.

§2. Functions with a one-dimensional critical locus

Let $f: (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}, 0)$ be a holomorphic function germ. The critical locus Σ of f is the set of common zeros of the partial derivatives of f, or, more precisely, the germ at 0 of this set. By Sard's theorem, $\Sigma \subset r^{-1}(0)$. We consider germs f for which Σ is of dimension 1.

Let $\Sigma_1, \Sigma_2, \ldots, \Sigma_r$ be the irreducible components of Σ. For each i we choose a point $P_i \neq 0$ on Σ_i and a slice U_i through P_i, transverse to Σ_i. Let $g_i = f|_{U_i \setminus \{U_i \cap \Sigma_i\}}$. Then g_i is an isolated hypersurface singularity. Its analytic type will in general depend on the choices which have been made. However, two different choices give rise to germs which are μ-homotopic, i.e. which are connected by a family with constant Milnor number. Therefore the μ-class of g_i is an invariant of f: it is called the transverse type of f along Σ_i (cf. [Vi] or [La-Li] (1.2.1) and (1.2.2)). Because of the spectrum of an isolated singularity depends only on its μ-class [Vi4], the spectrum of g_i is...
well-defined.

Recall that on Σ one has a sheaf of vanishing cycles Φ_i (cf. [0]). This is a constructible sheaf complex (in fact a perverse sheaf) whose cohomology sheaves at a point of Σ give the reduced cohomology of the Milnor fibre of the germ of f at the given point. Hence $H^i_f(\Phi_i) = 0$ for $P \in \Sigma \setminus \{0\}$ and $i \neq n-1$ and $H^{n-1}_f(\Phi_i)$ is a local system on each $\Sigma \setminus \{0\}$ whose fibre at P_i is $H^{n-1}(X|_{P_i})$. Remark that on $H^{n-1}_f(X|_{P_i})$ we have two monodromy transformations: the monodromy T_i of the germ g_i (which we call the horizontal monodromy) and the monodromy τ_i (the vertical monodromy) of the local system $H^{n-1}_f(\Phi_i)$, which is the restriction of the punctured disk $\Sigma \setminus \{0\}$ of $H^n_f(\Phi_i)$. These two monodromies commute with each other, because T_i is locally constant on $H^{n-1}_f(\Phi_i)$.

Let f be a sufficiently general linear form on \mathbb{C}^n. Then for all k sufficiently large and c with $0 < |c| < 1$ the germ $f_k = f + c \bar{f}$ has an isolated singularity at 0. Yomdin [Y] has proved the following formula for its Milnor number.

(2.1) Theorem. For all k sufficiently large
$$\mu(f_k) = \mu(f) + k \epsilon_0(\Sigma)$$

Here $\epsilon_0(\Sigma)$ denotes the multiplicity of Σ at 0.

The main subject of this article concerns the relations on the spectra of f and f_k. We formulate a conjecture which we then verify in certain cases. We keep the preceding notations and put $s_i = \epsilon_i(\Sigma)$, $\mu_i = \mu(f_i)$, $\text{Sp}(g_i) = \sum_{\lambda_i} (\lambda_i)$.

Moreover we write
$$\beta_n = \epsilon_{1,0}^{(-1/n)} \epsilon_f^{(-1)} \text{ for } n \in \mathbb{N}.$$ (2.2) Conjecture. For all i there exist non-negative rational numbers a_{ij}, $j=1, \ldots, m$, depending only on the vertical monodromy τ_i, such that for all k sufficiently large
$$\text{Sp}(f_k) = \text{Sp}(f) + \sum_{\lambda_i} (\lambda_i - s_i/k) \beta_i$$

In case $\tau_i = \text{Id}$ we have $a_{ij} = 0$ for all j.

We verify this conjecture in the cases $n=1$ ([4]), $n=2$ and the transverse type of f along each component of Σ is simple ([5]), arbitrary and f homogeneous with transverse singularities of Poincaré type ([6]). To make the latter result more useful we compute the spectrum of a homogeneous germ f with one-dimensional singular locus in §6. It is related to the spectrum of an isolated homogeneous singularity by the same formula as in the conjecture, when we substitute $k = d$. Moreover, in the homogeneous case, the correction coefficient ϵ associated to a transverse spectrum number λ is given by $\epsilon = d\alpha - (d\alpha)$.

Using Lê’s ‘carousel’ method, Siersma has been able to prove a formula for the zeta function of the monodromy of f_0, which is compatible with our conjecture. His proof also makes it possible to specify what the numbers a_{ij} in the formula should be.

Choose a basis $(e_i)_{i=1}^m$ for $H^n_f(X|_{P_i})$ on which both horizontal and vertical monodromy are given by an upper triangular matrix, with diagonal elements e_i and e_j, respectively, such that $\text{exp}(-2\pi i \lambda_j e_j) = \epsilon_j$. Then a_{ij} should be given by
$$0 < a_{ij} < 1 \text{ and } \text{exp}(-2\pi i a_{ij}) = \epsilon_j.$$ (M. Saito has given a general proof of our conjecture, which however does not give the formula for the spectrum of a homogeneous germ f with one-dimensional singular locus [Sa 2].)

We give some examples to illustrate the power of these theorems.

1. Let $f : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}, 0)$ of type A_n. Then $\text{Sp}(f) = (-n/2)$ and f_0 has type A_n. We obtain $\text{Sp}(A_n) = (-n/2) + (n/2 - 1)\beta_0$, so $\epsilon = 0$ works in this case. Indeed, the vertical monodromy is the identity here.

2. Take $f(x,y) = x^2$. Then $\text{Sp}(f) = (0)$ and the vertical monodromy is $-1d$. We take $\epsilon = 1/2$ to get exactly the spectrum of f_k which is of type B_{n+1}.

3. Take $f(x,y,z) = xyz$. We have seen in §1 that $\text{Sp}(f) = -2(1) + (0)$ and $\tau_i = \text{Id}$ for $i = 1, 2, 3$. The germ f_k has type A_{k+1} with spectrum $\text{Sp}(f) + (1)\beta_k$. More generally, $\text{Sp}(T_{f_k}) = \text{Sp}(f) + (0)^* (0)^* (0)^* \beta_k$.

4. Let $f \in C[z_0, \ldots, z_n]$ be homogeneous of degree d such that Σ is of dimension one and the transverse type along each component of Σ is A_2. Then the vertical monodromy is multiplication by $(-1)^{m_i}$. The correction coefficient ϵ is equal to 0 if m_i is even and to $1/2$ if m_i is odd.

5. Varchenko [V] has derived the following upper bound for the number of
well-defined.

Recall that on \(\Sigma \) one has a sheaf of vanishing cycles \(\Phi \) (cf. [0]). This is a constructible sheaf complex (in fact a perverse sheaf) whose cohomology sheaves at a point of \(\Sigma \) give the reduced cohomology of the Milnor fibre of the germ of \(f \) at the given point. Hence \(\check{H}^i(\Phi^k) = 0 \) for \(P \in \Sigma \setminus \{0\} \) and \(i \neq n-1 \) and \(\check{H}^{n-1}(\Phi^k) \) is a local system on each \(\Sigma \setminus \{0\} \) whose fibre at \(P \) is \(\check{H}^{n-1}(X_{\Phi^k}(P)) \). Remark that on \(H^{n-1}(X_{\Phi^k}) \) we have two monodromy transformations: the monodromy \(\gamma_{ij} \) of the germ \(g \) (which we call the horizontal monodromy) and the monodromy \(\gamma_{ij}(\text{vertical monodromy}) \) of the local system \(H^{n-1}(\Phi^k)_{\Sigma \setminus \{0\}} \) which is the restriction to the punctured disk \(\Sigma \setminus \{0\} \) of \(H^{n-1}(\Phi^k) \). These two monodromies commute with each other, because \(\gamma_{ij} \) is locally constant on \(H^{n-1}(\Phi^k)_{\Sigma \setminus \{0\}} \).

Let \(\ell \) be a sufficiently general linear form on \(\mathbb{C}^n \). Then for all \(k \) sufficiently large and \(e \) with \(0 < |e| < 1 \) the germ \(f^e_k = f - e \ell \) has an isolated singularity at 0. Yomdin [Y] has proved the following formula for its Milnor number.

\[
\mu(f^e_k) = \mu(f) + ke_0(\Sigma)
\]

Here \(e_0(\Sigma) \) denotes the multiplicity of \(\Sigma \) at 0.

The main subject of this article concerns the relation of the spectra of \(f \) and \(f^e_k \). We formulate a conjecture which we then verify in certain cases. We keep the preceding notations and put \(a_i = e_i(\Sigma), \mu_i = \mu(g_i), \text{Sp}(g_i) = \sum_{j} \lambda_j^i \).

Moreover we write
\[
\beta_n = e^{n-1}(-1/a) \in \mathbb{P} \text{ for } n \in \mathbb{N}.
\]

(2.2) Conjecture. For all \(i \) there exist non-negative rational numbers \(a_{ij} \), \(j=1, \ldots, a_i \), depending only on the vertical monodromy \(\gamma_{ij} \), such that for all \(k \) sufficiently large
\[
\text{Sp}(f^e_k) = \text{Sp}(f) + \sum_{j} \lambda_j k \left(a_{ij} \right) \beta_{a_{ij}}.
\]
In case \(\gamma_{ij} = \text{Id} \) we have \(a_{ij} = 0 \) for all \(j \).

We verify this conjecture in the cases \(n=1 \) ([4]), \(n=2 \) and the transverse type of \(f \) along each component of \(\Sigma \) is simple ([6]), \(n \) arbitrary and \(f \) homogenous with transverse singularities of Pfam-Brieskorn type ([6]). To make the latter result more useful we compute the spectrum of a homogenous germ \(f \) with one-dimensional singular locus in [6]. It is related to the spectrum of an isolated homogeneous singularity by the same formula as in the conjecture, when we substitute \(k = d \). Moreover, in the homogenous case, the correction coefficient \(\alpha \) associated to a transverse spectrum number \(\lambda \) is given by \(\alpha = d \lambda - \langle d \lambda \rangle \).

Using Lo's 'carousel' method, Siersma has been able to prove a formula for the zeta function of the monodromy of \(f \), which is compatible with our conjecture. His proof also makes it possible to specify what the numbers \(a_{ij} \) in the formula should be.

Choose a basis \(\{ e_{ij} \} \) for \(H^{n-1}(X_{\Phi^k}) \) on which both horizontal and vertical monodromy are given by an upper triangular matrix, with diagonal elements \(\gamma_{ij} \) and \(\gamma_{ij} \), respectively, such that \(\exp(-2\pi i \lambda_j) = \xi_j \). Then \(a_{ij} \) should be given by
\[
0 \leq a_{ij} < 1 \text{ and } \exp(-2\pi i a_{ij}) = \xi_j^{-1}.
\]

M. Saito has given a general proof of our conjecture, which however does not give the formula for the spectrum of a homogeneous germ \(f \) with one-dimensional singular locus [Sa 2].

We give some examples to illustrate the power of these theorems.

1. Let \(f : (\mathbb{C}^n, 0) \longrightarrow (\mathbb{C}, 0) \) be of type \(A_n \). Then \(\text{Sp}(f) = \langle -n \rangle \) and \(f^e_k \) has type \(A_{n+1} \). We obtain \(\text{Sp}(A_{n+1}) = \langle -n \rangle + \langle (n-1)! \rangle \), so \(a = 0 \) works in this case. Indeed, the vertical monodromy is the identity matrix.

2. Take \(f(x, y) = x^2 \). Then \(\text{Sp}(f) = \{0\} \) and the vertical monodromy is \(-1 \cdot \text{Id} \). We take \(a = 1/2 \) to get exactly the spectrum of \(f^e_k \) which is of type \(B_{n+1} \).

3. Take \(f(x, y, z) = xyz \). We have seen in [1] that \(\text{Sp}(f) = \langle -2(1) \rangle + \{0\} \) and \(\gamma_{ij} = \text{Id} \) for \(i = 1, 2, 3 \). The germ \(f^e_k \) has type \(B_{k+1} \) with spectrum \(\text{Sp}(f) + \langle 3 ! \rangle \), where \(k \) is arbitrary. More generally, \(\text{Sp}(f^e_k) = \text{Sp}(f) + \langle 0 \rangle \xi_k + \langle 0 \rangle \xi_k + \langle 0 \rangle \xi_k \).

4. Let \(f \in \mathbb{C}(z_0, \ldots, z_n) \) be homogeneous of degree \(d \) such that \(\Sigma \) is of dimension \(n \) and the transverse type along each component of \(\Sigma \) is \(A_1 \). Then the vertical monodromy is multiplication by \((-1)^{md} \). The correction coefficient \(\alpha \) is equal to 0 if \(nd \) is even and to 1/2 if \(nd \) is odd.

5. Varčenko [V] has derived the following upper bound for the number of
double points of a complex projective hypersurface of dimension $n+1$ with only isolated singularities in terms of the degree d. The estimate is as follows. Consider a homogeneous polynomial $f_{n,d}$ in $n+1$ variables with an isolated singularity at 0. Then \(\text{Sp} f_{n,d} = Y_d^{n+1} \) (multiple join product) where $Y_d = \mathbb{P}(\mathcal{O}_A)$. For $n = 1$ even let $I = (n/2 - 1 + 1/4d, n/2 - 1 + 1/4d)$ and for n odd let $I = (n/2 - 2 + 1/2d, n/2 - 1 + 1/2d)$. Then the number of ordinary double points on a hypersurface of degree d in $\mathbb{P}(\mathcal{O}_A)$ with no other singularities is not bigger than $\deg Y_d^{n+1}$.

This also follows from our Theorem (6.1) and (6.3). Let f define such a hypersurface with δ ordinary double points. Then f defines also a singularity with one-dimensional singular locus, consisting of δ lines through the origin and transverse type A_1. Let f be a general linear form. Then $f = \mathbb{C}^{n+1}$ is an isolated singularity for $\epsilon > 0$ small enough, hence it has a spectrum which is effective (all its coefficients are nonnegative), because the Milnor fibre of an isolated singularity is $(n-1)$-connected.

Suppose that n is even. By our Theorem (6.1) and (6.3)
\[
\text{Sp}(f + \mathbb{C}^{n+1}) = Y_d^{n+1} - \delta [\mathbb{P}(\mathbb{Z})]^{(n/2 + 1)}
\]
the coefficient of $\delta [\mathbb{P}(\mathbb{Z})]^{(n/2 + 1)}$ in Y_d^{n+1} must be at least δ.

§3. Some toric geometry

In this section we gather some results from toric geometry which will be used in the next sections. Our basic references are [De 1] and [De 2].

Let A be an $(n+1)$-simplex in \mathbb{R}^{n+1} with vertices ν_0, \ldots, ν_{n+1} in \mathbb{Z}^{n+1}. The toric variety \mathbb{X}_A is the union of the affine open subsets $U_i = \text{Spec}(A_i), i = 1, \ldots, n+1, with$
\[
A_i = \mathbb{C}[\nu_i] \text{ and } H_i = \mathbb{Z}^{n+1} \cap \sum_{j=1}^{n+1} \nu_j = \nu_i.
\]

The integral points of A correspond to a basis of the space of sections \mathbb{X}_A for a line bundle \mathcal{L} on \mathbb{X}_A. Each non-zero element g of $\mathcal{L}(A)$ defines a hypersurface $Z_{A,g}$ in $\mathbb{P}(A)$. The variety $Z_{A,g}$ has only quotient singularities. If $g \in \mathcal{L}(A)$ is sufficiently general, $Z_{A,g}$ intersects the strata F_{ν} of \mathbb{X}_A for ν a face of A transversally, and $Z_{A,g}$ will have only quotient singularities too.

In this situation it is called a quasi-smooth hypersurface.

Assume from now on that \mathbb{X}_A is quasi-smooth and that all monomials occurring in g with non-zero coefficient lie in $\langle \nu_i \rangle$ and A_0 is the face of A opposite to ν_i. Then one can define an automorphism γ of $Z_{A,g}$ as follows. Without loss of generality we may assume that $\nu_i = 0$. Let γ denote the linear form \mathbb{C}^{n+1} which takes the value 1 on A_0. It takes rational values on the lattice of integral points. For a finite subset A of \mathbb{Z}^{n+1} we define $\mathbb{C}(A)$ by
\[
\mathbb{C}(A) = \mathbb{P}(\mathbb{C}(A))^{(n+1)}
\]

Write $\mathbb{C}(A) = \exp 2\pi i \gamma$. By construction, $\mathbb{Z} \cap U_i = \text{Spec}(A_i/\mathbb{Z}_i)$ where $\mathbb{Z}_i = \mathbb{C}^{(i-1)} \mathbb{Z}$. The map $\mathbb{Z}^{n+1} \rightarrow \mathbb{C}(A)$ defines an automorphism of A_i which leaves \mathbb{Z} invariant and is the restriction of a global automorphism γ of $Z_{A,g}$.

By Lefschetz' theorem $H^*(\mathbb{P}(\mathbb{C}) \times \mathbb{C}(A)) = H^*(\mathbb{C}(A))$ for $i \geq n, \geq 2 - i$. We let $\mathbb{P}(\mathbb{C}, \mathbb{C}) = \text{Coker}(H^*(\mathbb{P}(\mathbb{C}), \mathbb{C}) \rightarrow H^*(\mathbb{C}(A)))$; this is the most interesting cohomology group of $Z_{A,g}$. It carries a pure Hodge structure of weight n. Danilov [Da 1] has calculated its Hodge numbers h^i, i. We will derive a formula for the spectrum of $\mathbb{C}(A)$ which is a little bit more explicit than Danilov's formulas (which applies to a more general situation). Our formula is similar to the formula of [St 3].

(3.3) Proposition. Let A, g, ν_i be as above, with $\nu_i = 0$. Let
\[
D = \mathbb{Z}^{n+1} \cap \{ \sum_{i=0}^{n+1} \nu_i t_i \mid 0 < t_i < 1 \}
\]

Then
\[
\mathbb{C}(D, \mathbb{C}) = \mathbb{C}(D, \mathbb{C})
\]

Proof. First observe that $\mathbb{C}(D, \mathbb{C}) = \mathbb{C}(D, \mathbb{C})$. (The subscript \mathbb{C} refers to the subspace on which \mathbb{C} acts with eigenvalues ϵ_1.) Let $\epsilon \in \mathbb{N}$ be defined by $\epsilon \mathbb{C}^{n+1} = \mathbb{C}^{n+1}$. Danilov computes the element $\mathbb{C}(A)$ in the group ring $\mathbb{C}(\mathbb{Z}^{n+1})$ corresponding to the representation of the group \mathbb{Z} of ϵth roots of unity on $\mathbb{C}(A)$, $\mathbb{C}(A)$. The answer can be formulated in the following way. For $A \subseteq \mathbb{Z}^{n+1}$ finite let
\[
\lambda(A) = \sum_{\nu_i} (\text{Int } A \cap \mathbb{Z}^{n+1}) \in \mathbb{C}(\mathbb{Z}^{n+1})
\]

For a τ-simplex $\tau \subseteq \mathbb{Z}^{n+1}$ with integral vertices ν_0, \ldots, ν_n and $n \in \mathbb{N}$ define
\[
D(\tau) = \{ \sum_{i=0}^{n+1} \nu_i t_i \mid 0 < t_i < 1, \sum_{i=0}^{n+1} = 1 \}
\]

Then
\[
\lambda(D(\tau) \cap \mathbb{Z}^{n+1}) = \lambda(D(\tau) \cap \mathbb{Z}^{n+1})
\]
double points on a complex projective hypersurface of dimension n−1 with only isolated singularities in terms of the degree d. The estimate is as follows. Consider a homogeneous polynomial \(f_{n,d} \) of degree d in n−1 variables with an isolated singularity at 0. Then \(\text{Sp}(f_{n,d}) = Y_{d}^{(n+1)} \) (multiple join product) where \(Y_{d} \) = \(\beta_{n-1} \).

For nd even let \(I = \frac{n}{2} - 2 + 1/4, n/2 - 1 + 1/4 \) and for nd odd let \(I = \frac{n}{2} - 2 + 1/2d, n/2 - 1 + 1/2d \). Then the number of ordinary double points on a hypersurface of degree d in \(P^{n} \) with no other singularities is not bigger than \(\text{deg}(f_{n,d}) \).

This also follows from our Theorems (6.1) and (6.3). Let \(f \) define such a hypersurface with \(\delta \) ordinary double points. Then \(f \) defines also a singularity with one-dimensional singular locus, consisting of \(\delta \) lines through the origin and transverse type \(A_{1} \). Let \(f \) be a general linear form. Then \(f + \epsilon f^{(n+1)} \) is an isolated singularity for \(\epsilon > 0 \) small enough, hence it has a spectrum which is effective (all its coefficients are nonnegative), because the Milnor fibre of an \(n \)-dimensional isolated hypersurface singularity is \((n-1)\)-connected.

Suppose that nd is even. By our Theorems (6.1) and (6.3)

\[\text{Sp}(f + \epsilon f^{(n+1)}) = Y_{d}^{(n+1)} - \delta \beta_{n-1} \]

hence the coefficient of \((n/2 - 1 + 1/2d)\) in \(Y_{d}^{(n+1)} \) must be at least \(\delta \). This coefficient is exactly equal to \(\text{deg}(f_{n,d}) \). If nd is odd,

\[\text{Sp}(f + \epsilon f^{(n+1)}) = Y_{d}^{(n+1)} - \delta \beta_{n-1}^{(n/2 - 1 - 1/2d)} \]

and we see that the coefficient of \((n/2 - 1 + 1/2d)\) in \(Y_{d}^{(n+1)} \) has to be at least \(\delta \). (This argument is due to Theo de Jong.)

§3. Some toric geometry

In this section we gather some results from toric geometry which will be used in the next sections. Our basic references are [Da 1] and [Da 2].

Let \(A \) be an \((n+1)\)-simplex in \(\mathbb{R}^{n+1} \) with vertices \(v_{0}, \ldots, v_{n+1} \) in \(\mathbb{Z}^{n+1} \). The toric variety \(\mathbb{P}_{A} \) is the union of the affine open subsets \(U_{i} = \text{Spec}(A_{i}) \), \(i = 0, \ldots, n+1 \), with

\[A_{i} = C[v_{i}] \text{ and } H_{i} = \mathbb{Z}^{n+1} \cap \sum_{j=1}^{n+1} v_{j} - v_{j}. \]

The integral points of \(A \) correspond to a basis of the space of sections \(L(A) \) for a line bundle \(\mathcal{O} \) on \(\mathbb{P}_{A} \). Each non-zero element \(g \) of \(L(A) \) defines a hypersurface \(Z_{A,g} \) in \(\mathbb{P}_{A} \). The variety \(Z_{A,g} \) has only quotient singularities. If \(g \in L(A) \) is sufficiently general, \(Z_{A,g} \) intersects the strata \(H_{j} \) of \(\mathbb{P}_{A} \) for \(j \) a face of \(A \) transversally, and \(Z_{A,g} \) will have only quotient singularities too.

In this situation it is called a quasi-smooth hypersurface.

Assume from now on that \(Z_{A,g} = Z \) is quasi-smooth and that all monomials occurring in \(g \) with non-zero coefficient lie in \((v_{i})_{0} \cup A_{0} \) where \(A_{0} \) is the face of \(A \) opposite to \(v_{0} \). Then one can define an automorphism \(\gamma \) of \(Z \) as follows.

Without loss of generality we may assume that \(v_{0} = 0 \). Let \(f \) denote the linear form on \(\mathbb{Z}^{n+1} \) which takes the value 1 on \(A_{0} \). It takes rational values on the lattice of integral points. For a finite subset \(A \) of \(\mathbb{Z}^{n+1} \) we define \(\sigma(A) \in \gamma \) by

\[\sigma(A) = \frac{1}{\text{deg}(f_{n,d})} (f_{n,d}) \]

Write \(e(\chi) = \exp(2\pi i \chi) \). By construction, \(Z \cap U_{0} = \text{Spec}(A_{0}/(f_{0})) \) where \(f_{0} = \gamma^{-1}f_{0} \). The map \(\mathbb{Z}^{n+1} \rightarrow e(\chi)^{\mathbb{Z}} \) defines an automorphism \(A_{0} \) which leaves \(f_{0} \) invariant and is the restriction of a global automorphism \(\gamma \) of \(Z \).

By Lefschetz' theorem \(H^{i}(\mathbb{P}(A_{0}), C) \cong H^{i}(Z, C) \) for \(i \leq n, 2m+2 \). We let \(P(\mathbb{Z}, C) = \text{Coker}(H^{i}(\mathbb{P}(A_{0}), C) \rightarrow H^{i}(Z, C)) \), which is the most interesting cohomology group of \(Z \). It carries a pure Hodge structure of weight \(n \). Danilov [Da 2] has calculated its Hodge numbers \(h^{i,j} \). We will derive a formula for the spectrum of \(P(\mathbb{Z}, C, F, \gamma) \) which is a little bit more explicit than Danilov's formulas (which apply to a more general situation). Our formula is similar to the formula of [St 3].

(3.1) Proposition. Let \(A, g, \epsilon \) be as above, with \(v_{0} = 0 \). Let

\[D = \mathbb{Z}^{n+1} \cap \{ \sum_{i=1}^{n+1} t_{i} v_{i} \mid 0 < t_{i} < 1 \} \cap \mathbb{N}^{n+1} \subset \mathbb{Z}^{n+1} \]

Then

\[\text{Sp}(P(\mathbb{Z}, C, F, \gamma)) = \sigma(D) \]

Proof. First observe that \(G_{0} = G_{0} \) in the notation of [Da 2], (4.10). (The subscript \(\mathbb{Z}^{n+1} \) refers to the subspace on which \(\gamma \) acts with eigenvalues \(e(\chi) \).) Let \(\epsilon \in C_{n} \) be defined by \(e(\chi)^{n+1} = e(\epsilon) \). Danilov computes the element \(P_{0}^{n+1} \) in the group ring \(\mathbb{Z}[e(\epsilon)^{1/2}] \) corresponding to the representation of the group \(A_{0} \) of \(e(\epsilon) \) roots of unity on \(H^{1,1}(\mathbb{Z}) \). The answer can be formulated in the following way. For \(A \subset \mathbb{Z}^{n+1} \) finite let

\[\lambda(A) = \sum_{p \in \mathbb{Z}^{n+1}} e(\chi)^{(p \cdot z)} \in \mathbb{Z}[e(\epsilon)^{1/2}]. \]

For a t-simplex \(\tau \subset \mathbb{Z}^{n+1} \) with integral vertices \(v_{0}, \ldots, v_{n} \) and \(n \in \mathbb{N} \) define

\[D(\tau) = \left(\sum_{0 \leq i < n} t_{i} v_{i} \mid 0 < t_{i} < 1, \sum_{i=0}^{n} t_{i} = 1 \right) \]

and \(\lambda(t) = \lambda(\tau) \cap \mathbb{N}^{n+1} \).
Then
\[A^{n,p} = \sum_{m=1}^{\infty} (-1)^{m+1} \frac{[\dim m + 1]}{[p + m + 1]} \gamma_{m+1}(\lambda) = \delta_{m+1}(\delta). \]

The last equality is a nice exercise. The proof is completed by looking at the definition of the spectrum.

\[\square \]

§ 4. Proof of the conjecture for curves

Let \(f: (\mathbb{C}, 0) \to (0, 0) \) be a curve singularity. We decompose \(f \) into irreducible factors

\[f = f_1 \cdots f_r, \]

with \(p_i > 1 \) for \(i = 1, \ldots, r \). Let \(\Sigma_i \) be the zero set of \(f_i \). Then the critical locus of \(f \) is \(\Sigma = \Sigma_1 \cup \cdots \cup \Sigma_r \cup \{0\} \). The transverse type of \(f \) along \(\Sigma_i \) is \(A_{p_i-1} \).

The transverse Milnor fibre consists of \(p_i \) points which are permuted by the vertical monodromy \(\tau_i \). If \(g_i = f^{\tau_i} \) and \(v_i = \ord_{\Sigma_i}(g_i) \), then \(v_i \) is the \(p_i \)th power of a cyclic permutation of these points. Hence \(v_i \) depends only on \(v_i \) and \(p_i \).

Let \(\xi: \mathbb{C} \to \mathbb{C} \) be a good embedded resolution of \(f \), i.e., a sequence of blowings-up in points such that \((f^{\xi})^{-1}(0) \) is a divisor with normal crossings on \(\mathbb{C}^2 \). Write \((f^{\xi})^{-1}(0) = E + \sum_{i=1}^r E_i \) for \(E \) irreducible (by the normalization). The \(E_i \) are isomorphic to \(P^1 \).

Let \(\chi_i \) be the strict transform of \(\Sigma_i \) under \(\xi \), and write

\[\text{div}(f^{\xi}) = \sum_{i=1}^r \chi_i. \]

For each \(1 \leq (1, \ldots, r+1) \) there is a unique \(\alpha(1) \in \chi \) such that \(\chi_{\alpha(1)} \cap E_i = (1, \ldots, r+1) \).

(4.1) Lemma: \(v_i = \alpha(1) \mod p_i \).

Proof: We have \(v_i = \ord_{\Sigma_i}(g_i) \) and \(v_i = \ord_{\xi}(g_{\xi i}) \chi_i \) as \(\chi_i \to \xi \) is the normalization. Write

\[\text{div}(f(x^{\xi})) = \sum_{i=1}^r \chi_i. \]

Then

\[\text{div}(g_{\xi i} x^{\xi}) = \sum_{i=1}^r \chi_i. \]

For \(i \neq j \), the components \(x_j \) and \(x_j \) do not intersect, hence \(v_i \equiv \alpha(1) \mod p_i \).

Let \(\ell \) be a linear form on \(\mathbb{C} \) such that the line \(\ell = 0 \) is not tangent to any branch of \(f \). We write

\[\text{div}(x^{\xi}) = L + \sum_{i=1}^r \text{div}(g_{\xi i} x^{\xi}). \]

Let \(\ell \) be a linear form on \(\mathbb{C} \) such that the line \(\ell = 0 \) is not tangent to any branch of \(f \). We write

\[\text{div}(x^{\xi}) = L + \sum_{i=1}^r \text{div}(g_{\xi i} x^{\xi}). \]

Let \(k \in \mathbb{N} \) be such that \(k_m > e_k \) for all \(m \in \mathbb{V} \). Defining \(f_k = f + ek \) for \(0 < |e| < 1 \), so that all holomorphic coordinates \((u,v) \) on \(\mathbb{C}^2 \) around \(P \) of \(f_k \), we have

\[t^{\alpha}(u,v) = u^{\alpha(1)}, \quad t^{\alpha(1)}(u,v) = u^{\alpha(1)} v^{1/2}, \quad x_j = 0. \]

(4.2) Lemma: \(\alpha = \epsilon(1) \).

Proof: \(\alpha = \epsilon(1) \).

We are going to construct a modification \(Z \) of \(\mathbb{C}^2 \) which gives a good partial resolution of \(f_k \) (for \(k \) fixed) in the sense that \(Z \) is admitted to have some cyclic quotient singularities. We use toric methods. The construction is analogous to the one in [Ma 2, §3] to which we refer for proofs.

The local situation near \(P \) is the following. Let \(f, \xi \in \mathbb{C}(u,v) \) be given by \(f(u,v) = u^{k+e_k}, v(u,v) = u^k \). For fixed \(k \in \mathbb{N} \) we let \(f_k(u,v) = f(u,v) + e_k(v^{1/2}) = u^{k+e_k} + e_k(u^{e_k}) \) with \(\lambda = km + e_k \). We suppose that \(\lambda > 0 \).

Let \(\Delta \subset \mathbb{R}^2 \) be the Newton diagram of \(f_k \), i.e., the convex hull of \(\{(e_k, e_k) \} \cup \{(0,0), (1,1)\} \). We denote its 1-dimensional compact face by \(\Gamma \).

Let \(H = \mathbb{C}^2 \cap \Gamma, (\{x_k \}, \{y_k \}), H_k = \mathbb{C}^2 \cap \Gamma, (\{x_k \}, \{y_k \}) \). Then the toric variety \(P_k \) is the union of \(U \cup U_k \) with \(U_k = \text{Spec}(\mathbb{C}[M]) \). The inclusions \(X_k \subset H_k \)

We define a proper morphism

\[\rho: P_k \to \text{Spec}(\mathbb{C}[u,v]) \]

such that \(\rho^{-1}(0) = P_k + t \).

We need to know the order of \(t \) and \(t \) along the divisor \(P_k \). Let \(\delta = \text{gcd}(\lambda_k, e_k) \), and write \(k + e_k = \delta \eta_k + p_k \). Put \(\eta_k = \delta \eta_k \).

Then \(U_k \subset \text{Spec}(\mathbb{C}[\{x_k \}, \{y_k \}], \eta_k, e_k) \). The ideal of \(P_k \cap U_k \cap \{x_k \} \) is equal to \(\langle \xi \rangle \).

Moreover, on \(U_k \cap \{x_k \} \):

\[\rho^* (u) = e_k u^\ast, \quad \rho^* (v) = \xi u^\ast. \]

We conclude from this that the components of the special fibre of \(f_k \) have multiplicity 1, \(k, \delta, \xi \) or \(e_k \). Choose a common multiple \(d \) of \(e \) and \(k, \delta, \xi \).

Let \(f_k(u,v,w) = u^d - f_k(u,v) \). Let \(\mathbb{C} \) be the Newton diagram of \(f_k \). Then \(\mathbb{C} \) is a face of \(\mathbb{C} \). The form \(f_k \) defines a hypersurface \(\mathbb{C} \) in \(P_k \) which is transverse to the strata of \(P_k \) corresponding
Then
\[
A^{n,\nu} = \sum_{\nu \in \mathbb{Z}^n} (-1)^{\nu + 1} \prod_{i=1}^n (\dim \tau_i + 1) \lambda_1(\tau_i) = \delta_{\nu = \mathbf{0}}(\Delta).
\]
The last equality is a nice exercise. The proof is completed by looking at the definition of the spectrum.

§4. Proof of the conjecture for curves

Let \(f : (E^2, 0) \rightarrow (C^2, 0) \) be a curve singularity. We decompose \(f \) into irreducible factors
\[
f = f_1 \cdots f_r f_{r+1} \cdots f_m
\]
with \(p_i > 1 \) for \(i = 1, \ldots, r \). Let \(\Sigma_i \) be the zero set of \(f_i \). Then the critical loci of \(f \) in \(\Sigma_1 \cup \cdots \cup \Sigma_r \cup \{0\} \). The transverse type of \(f \) along \(\Sigma_i \) is \(A_{p_i} \).

The transverse Minor fibre consists of \(p_i \) points which are permuted by the vertical monodromy \(\tau_i \). If \(s_i = f : F_i \) and \(s_i = \text{ord}_u(x_i|F_i) \), then \(\tau_i \) is the \(p_i \)-th power of a cyclic permutation of these points. Hence \(\tau_i \) depends only on \(n_i \) and \(p_i \).

Let \(x' : Z' \rightarrow E^2 \) be a good embedded resolution of \(f \), i.e., a sequence of blowing-ups in points such that \((f(x'))^{-1}(0) \) is a divisor with normal crossings on \(Z' \). Write \(x''(0) = E \cup_{\nu} E_{\nu} \) where \(E_{\nu} \) are isomorphic to \(F_i \).

Let \(\Sigma_i \) be the strict transform of \(\Sigma_i \) under \(x' \), and write
\[
\text{div}(f(x')) = \sum_{i} \Sigma_{E_i} + \sum_{\nu} E_{\nu} \cdot \nu.
\]

For each \(i \in \{1, \ldots, r+m\} \) there is a unique \(\delta \in \nu \) such that \(X_i \cap E_{\nu} = (F_{i}) \) and \(\nu \equiv \delta \mod p_i \).

(4.1) Lemma: \(\nu_i = \varepsilon''(\mu) \mod p_i \)
Proof. We have \(\nu_i = \text{ord}_u(\varepsilon'' \cdot x_i) \) and \(\varepsilon'' \cdot x_i \) as \(X_i \rightarrow \Sigma_i \) in the normalization. Write
\[
\text{div}(f(x')) = \sum_{\nu} E_{\nu} + \sum_{i} X_i.
\]
Then
\[
\text{div}(x''(x')) = \sum_{\nu} \varepsilon'' \cdot E_{\nu} + \sum_{i} X_i.
\]
For \(i \neq j \) the components \(X_i \) and \(X_j \) do not intersect, hence \(\nu_i = \varepsilon''(\mu) \mod p_i \).

Let \(\ell \) be a linear form on \(E^2 \) such that the line \(\ell \cdot x = 0 \) is not tangent to any branch of \(f \). We write
\[
\text{div}(\ell(x')) = L + \sum_{\nu} \varepsilon'' \cdot E_{\nu}.
\]

THE SPECTRUM OF HYPERSURFACE SINGULARITIES

Let \(k \in \mathbb{N} \) be such that \(k \geq c \), for all \(x \in E \). Define \(f_\ell \equiv f + c\ell^2 \) for \(0 < c \ll 1 \) (so that all holomorphic coordinates \((u, v)\) on \(Z' \) around \(P \) we have
\[
f_\ell(x'(u, v)) = u^{a_1}(v), \quad f_\ell(x' - x(0)) = u^{a_2}(v), \quad x_1 \cdot v = 0.
\]

(4.2) Lemma: \(\mu_i = \varepsilon''(\mu_i) \mod p_i \)
Proof. As \(\ell \) is transverse to \(\Sigma_1 \), \(\mu_i = \text{ord}_u(f_\ell \cdot x_i) = \text{ord}_u(f_\ell \cdot x_i) \) as \(x_i \rightarrow \Sigma_i \) in \(\mu_i \).

We are going to construct a modification of \(Z' \) which gives a good partial resolution of \(f^{(2)} \) for \(k \) fixed in the sense that \(Z' \) is admitted to have some cyclic quotient singularities. We use toric methods. The construction is analogous to that in [M.2, §5] to which we refer for proofs.

The local situation near \(P \) is of the following form. Let \(f, x \in \mathbb{C}(u, v) \) be given by \(f(u, v) = u^{a_1}, \quad x(u, v) = u^{a_2} \). For fixed \(k \in \mathbb{N} \) we let \(f^{(2)}(u, v) = f(u, v) + c\mu_k x(u, v)^k \) with \(\lambda = km - \epsilon \). We suppose that \(\lambda > 0 \).

Let \(\Delta \subset \mathbb{R}^2 \) be the Newton diagram of \(f^{(2)} \), i.e., the convex hull of \(\{(a, p) + \mathbb{Z}^2 \} \cup \{(a, m) + \mathbb{Z}^2 \} \). We denote its 1-dimensional compact face by \(\Gamma \).

Let \(M = \mathbb{Z}^2 \cap \Gamma \). \((a, m) \in M \), \(\mathbb{Z}^2 \cap \Delta \). Then the toric variety \(P \) is the union of \(U \cup U \) with \(U = \text{Spec}(\mathbb{C}[M]) \). The inclusions \(\mathbb{Z}^2 \cap M \) define a proper morphism
\[
\rho : P \rightarrow \text{Spec}(\mathbb{C}[M])
\]
such that \(\rho^{-1}(0) = P_{\ell} \neq P \).

We need to know the order of \(f^{(2)} \) along the divisor \(P_{\ell} \). Let \(\delta = \text{gcd}(m, a, p) \) and write \(m = a, \quad p = b \), \quad p = b \), \quad p = b \), so \(\text{gcd}(a, b) = 1 \). Choose \(a, b \in \mathbb{Z} \) with \(ax + by = 1 \). Put
\[
\xi = u^{a_2}, \quad \eta = u^{a_1}.
\]
Then \(U \cup U = \text{Spec}(\mathbb{C}(\xi, \eta, \nabla)) \). The ideal of \(P_{\ell} \) in \(U \cup U \) is equal to (\(\xi \)). Moreover, on \(U \cup U \):
\[
\rho^*(\nabla) = u^{a_2} \eta, \quad \rho^*(\xi) = \xi^a, \quad \rho^*(\eta) = \eta^b.
\]

We conclude from this that the components of the special fibre of \(f^{(2)} \) have multiplicity 1, \(\text{gcd}(m, a, p) = 1 \). Choose a common multiple \(d \) of \(a \) and \(b \), and \(k = d \).

Let \(P(f, u, v, w) = f(u, v, w) \).

Let \(\Delta \) be the Newton diagram of \(f^{(2)} \). Then \(\Delta \) is a face of \(\Delta \). The form \(P \) defines a hypersurface \(\bar{U} \) in \(P_{\ell} \) which is transverse to the strata of \(P_{\ell} \) corresponding...
to its faces. \(\bar{\Omega} \) does not pass through the point of \(P^\sim_2 \) corresponding to the vertex \((0,0,0)\) which is the only point where \(P^\sim_2 \) is not quasismooth. Hence \(\bar{\Omega} \) is quasismooth. We obtain a finite morphism
\[
\sigma: \bar{\Omega} \to P^\sim_2
\]
which exhibits \(\bar{\Omega} \) as a cyclic covering of \(P^\sim_2 \) with covering group \(\mu_d \), where \(\zeta \in \mu_d \) acts via \((u,v,w) \mapsto (u,v,\zeta w)\). We have a commutative diagram
\[
\begin{array}{ccc}
\bar{\Omega} & \xrightarrow{\sigma} & P^\sim_2 \\
| & | & | \\
\mu_d & \cong & \mu_d \\
\downarrow & | & \downarrow \\
\zeta & \mapsto & \zeta \\
\end{array}
\]
\[
t \mapsto t^d
\]
and \(\bar{\Omega} \) is the normalization of \(P^\sim_2 \times \bar{E} \). The special fibre of \(w \) on \(\bar{\Omega} \) is a reduced divisor with \(V \)-normal crossings in the sense of [St 2].

Performing this construction in a small neighborhood \(U_i \) of each point \(P_i \) we obtain spaces \(\bar{U}_i \) and \(\bar{U} \). The integer \(d \) can be chosen in a uniform way. Put \(U_0 = Z \setminus \{P_1, \ldots, P_n\} \) and let \(\bar{U}_0 \) be the normalization of \(U_0 \times \bar{E} \). This glue to \(\bar{U}_0 \) to give a diagram
\[
\begin{array}{ccc}
\bar{U}_0 & \xrightarrow{\sigma} & \bar{U} \\
\uparrow & | & \uparrow \\
\bar{U} & \xrightarrow{\bar{\Omega}} & P^\sim_2 \\
\end{array}
\]
We define \(\rho = \sigma^* \rho \). Note that \(\rho \) just replaces the points \(P_i \) by the curves \(P_i \) and hence for each \(\epsilon \in \mathbb{V} \), the strict transform of \(E_\epsilon \) under \(\rho \) is isomorphic to \(E_\epsilon \). By abuse of language we denote it by \(E_\epsilon \) again. So
\[
div(f_\epsilon|_X) = \sum_{i=1}^r \sum_{a \in A_\epsilon} a \cdot X_i^{(k)}
\]
where \(\lambda_i^{(k)} \) is the strict transform of the \(k \)th branch of \(f_\epsilon \). It is a small deformation of \(X_i \) for \(i > r \) and looks like a \(n \)-fold ramified covering of \(X_i \) for \(i < r \).

Recall from [St 2, 3.2.] that for each union \(E' \) of compact components of \(\text{div}(f_\epsilon) \) there exists a filtered sheaf complex \(E' \) supported on \(E' \) such that
\[
H^*(E', X_{\epsilon_1} \Omega) = H^*(X(f_\epsilon) \cap U_\epsilon, \mathcal{C})
\]
where \(X(f_\epsilon) \) is the Minor fibre of \(f_\epsilon \) and \(U_\epsilon \) is a tubular neighborhood of \(E' \) in \(Z \). For divisors \(E' \subset E' \) we have relative complexes \(E', X_{\epsilon_1} \Omega \) with support on the closure of \(E' \) in \(E' \). In case \(E' = E' \cup U_\epsilon \), these relative groups are easy to compute. Let \(D_\alpha, D_\beta \) be the inverse images of \(E_\epsilon \) and \(E' \) in \(Z \). In \(D_\alpha \) we have the finite subsets \(\Sigma_\alpha = D_\alpha \cap D_\beta \) and \(\Sigma_\beta = D_\beta \cap (\text{closure of } \text{div}(w) \setminus D_\beta) \). Then
to its faces. \(\tilde{U} \) does not pass through the point of \(F_{A} \) corresponding to the
vertex \((0,0,d)\) which is the only point where \(P_{A} \) is not quasismooth. Hence \(\tilde{U} \) is quasismooth. We obtain a finite morphism
\[e: \tilde{U} \rightarrow F_{A} \]
which exhibits \(\tilde{U} \) as a cyclic covering of \(F_{A} \) with covering group \(\mu_{d} \), where \(\mu_{d} \) acts via \((u,v,w) \rightarrow (u,v,w)\). We have a commutative diagram
\[\begin{array}{ccc}
\tilde{U} & \xrightarrow{e} & F_{A} \\
\downarrow & & \downarrow \\
\tilde{C} & \xrightarrow{f_{A}^{*}} & C \\
\end{array} \]
and \(\tilde{U} \) is the normalization of \(P_{A} \times \tilde{C} \). The special fibre of \(w \) on \(\tilde{U} \) is a reduced divisor with \(V \)-normal crossings in the sense of [St. 2].

Performing this construction in a small neighborhood \(U_{i} \) of each point \(F_{i} \), we obtain spaces \(U_{i}^{1} \) and \(U_{i}^{+} \). The integer \(d \) can be chosen in a uniform way. Put \(U_{0} = Z_{c} \setminus \{F_{i}^{+} \} \) and let \(U_{0} \) be the normalization of \(U_{0} \times \tilde{C} \). This glued to the \(U_{i}^{+} \) to give a diagram
\[\begin{array}{ccc}
\tilde{Z} & \xrightarrow{\tilde{f}_{A}^{*}} & Z = \bigcup_{i < 0} U_{i}^{+} \cup U_{i}^{1} \\
\downarrow & & \downarrow \\
\tilde{C} & \xrightarrow{f_{A}^{*}} & C \\
\end{array} \]
We define \(s = \tilde{e}^{*} \circ \rho \). Observe that \(\rho \) just replaces the points \(F_{i} \) by the curves \(U_{i}^{+} \). Hence for each \(a \in V \), the strict transform of \(E_{a} \) under \(\rho \) is isomorphic to \(E_{a} \). By abuse of language we denote it by \(E_{a} \) again. So
\[\text{div}(f_{A}^{*}(w)) = \sum_{i} \delta_{i} E_{a}^{*} a_{i} X_{a}(i) F_{i}^{+} + \rho_{\text{reg}}^{*} X_{a}^{(k)} \]
where \(X_{a}^{(k)} \) is the strict transform of the \(k \)-th branch of \(f_{A}^{*} \). It is a small deformation of \(X_{a} \) for \(i > r \) and looks like a \(p_{i} \)-fold ramified covering of \(X_{a} \).

Recall from [St.-Z, §3] that for each union \(E' \) of compact components of \(\text{div}(f_{A}^{*}(w)) \) there exists a filtered sheaf complex \(\mathcal{K}_{E'}^{\cdot} \) supported on \(E' \) such that
\[H^{*}(E',\mathcal{K}_{E'}^{\cdot}) = H^{*}(X_{E}^{(k)} \cap U_{E},\mathcal{C}) \]
where \(X_{E}^{(k)} \) is the Minor fibre of \(F_{E} \) and \(U_{E} \) is a tubular neighborhood of \(E' \) in \(Z \). For divisors \(E' \subseteq E' \) we have relative complexes \(\mathcal{K}_{E',E'}^{\cdot} \) with support on the closure of \(E' \) in \(E' \). In the case \(E' = E' \cup E' \), these relative groups are easy to compute. Let \(D_{a}^{+} D_{a}^{-} \) be the inverse images of \(\mathcal{K}_{E'}^{\cdot} \) and \(E' \) in \(\tilde{C} \).

Recall from [St.-Z, §3] that for each union \(E' \) of compact components of \(\text{div}(f_{A}^{*}(w)) \) there exists a filtered sheaf complex \(\mathcal{K}_{E'}^{\cdot} \) supported on \(E' \) such that
\[H^{*}(E',\mathcal{K}_{E'}^{\cdot}) = H^{*}(X_{E}^{(k)} \cap U_{E},\mathcal{C}) \]
where \(X_{E}^{(k)} \) is the Minor fibre of \(F_{E} \) and \(U_{E} \) is a tubular neighborhood of \(E' \) in \(Z \). For divisors \(E' \subseteq E' \) we have relative complexes \(\mathcal{K}_{E',E'}^{\cdot} \) with support on the closure of \(E' \) in \(E' \). In the case \(E' = E' \cup E' \), these relative groups are easy to compute. Let \(D_{a}^{+} D_{a}^{-} \) be the inverse images of \(\mathcal{K}_{E'}^{\cdot} \) and \(E' \) in \(\tilde{C} \).

In \(D_{a}^{+} \), we have the finite subsets \(D_{a} \cap D' \) and \(D_{a} \cap \text{closure of div}(w) \cap D' \). Then
\[H^{*}(E_{a},\mathcal{K}_{E_{a}}^{\cdot}) = H^{*}(D_{a} \setminus \Sigma_{a},\mathcal{C}) \]
This is even an isomorphism of mixed Hodge structures compatible with the monodromy actions. On the right hand side the monodromy acts via the covering transformation \(v \rightarrow e(1/v) \).

We now choose \(E' = U_{E}, E = E' \cup U_{E}, F_{A}, \Gamma_{1} \).

(4.3) Proposition. \(\text{Sp}(g_{a}) = \text{Sp}(f) = \text{Sp}(\mathcal{H}(X_{E}^{(k)} \cap U_{E},\mathcal{C})) \).

Proof. By [St. 2], we have \(H^{*}(E',\mathcal{K}_{E'}^{\cdot}) = H^{*}(X_{E}^{(k)} \cap U_{E},\mathcal{C}) \) as mixed Hodge structures. The groups \(H^{*}(E',\mathcal{K}_{E'}^{\cdot}) \) carry a mixed Hodge structure which in general will depend on \(e \). If \(e \) varies, we obtain a variation of mixed Hodge structure over a punctured disc which has a limit when \(e \rightarrow 0 \). This limit is isomorphic to \(H^{*}(X_{E}^{(k)} \cap U_{E},\mathcal{C}) \) again by the construction of [St. 2]. As for each \(k \) both finite subsets \(\Sigma_{a} \) and \(\Sigma_{a}, F_{A}, \Gamma_{1} \), of each component over \(\Gamma_{1} \) are non-empty, \(H^{*}(E_{a},\mathcal{K}_{E_{a}}^{\cdot}) = 0 \) unless \(k = 1 \).

To prove the conjecture, we just have to compute \(\text{Sp}(\mathcal{H}(X_{E}^{(k)} \cap U_{E},\mathcal{C})) \), where \(k \) lies above \(\Gamma_{1} \), in \(Z \). The result in §3 deals with \(H^{*}(X_{E}^{(k)}) \). It is an easy exercise to take \(\Sigma_{a} \) and \(\Sigma_{a} F_{A}, \Gamma_{1} \) into account.

Write \(x = x^{(1)} A \), \(e = e^{(1)} A \) and \(p = p^{(1)} A \).

Put
\[A = Z_{c} \cap \{t_{1}, e_{1} p_{1}^{(1)} + t_{2}^{(1)} (k_{m}, 0) \mid 0 < t_{1} \leq 1, 0 < t_{2} < 1 \} \]
Then \(\text{Sp}(A) = \text{Sp}(p^{(1)} A) \).

In the notation of §3, with \(\text{Sp}(t_{1}, e_{1} p_{1}^{(1)} + t_{2}^{(1)} (k_{m}, 0) = t_{1}^{(1)} + t_{2}^{(1)} \text{ we get} \)
\[\text{Sp}(\mathcal{H}(X_{E}^{(k)} \cap U_{E},\mathcal{C})) = \text{Sp}(A) \).

To connect with the formula of the conjecture, observe that \(A \) consists of the points \((h, j) \) where \(j = 1, \ldots, p-1 \) and \(h \in \mathbb{Z} \cap \{j p_{m}, k_{m} + j p_{m} \}. \) The transverse spectrum numbers are \(\lambda_{j} = 1 + j p_{m} \). Put \(e_{1} = e_{j} p_{m} = j p_{m} \).

Then \(e_{1} \) depends only on the vertical monodromy along \(X_{E} \) (see Lemma 1). Moreover, \((h, j) = t_{1}^{(1)} e_{1} p_{1}^{(1)} + t_{2}^{(1)} (k_{m}, 0) \) with \(t_{1}^{(1)} = j p_{m}, t_{2}^{(1)} = (n - a) / k_{m} \) where \(n = h = j p_{m} \). Hence
\[\text{Sp}(A) = \text{Sp}(p^{(1)} A, X_{E}^{(k)} \cap U_{E},\mathcal{C}) \]
This finishes the proof of the conjecture for curves.

(4.4) Remark. There exists a slight generalization of the theorem. To formulate this, we recall the notions of a polar curve and the polar ratios of \(f \). Let \(f \) be a sufficiently general linear form. We obtain a map \(\phi = (f; (z, w)) \rightarrow (z, w) \otimes (z, w) \). The polar curve of \(f \) (with respect to \(f \)) is the union \(F \) of those components of the critical locus of \(f \) which are not contained in \(f^{-1}(0) \). If \(z, w \) are coordinates in the target, then for each component \(F_{i}^{(k)} \)
of E the curve $A_1 = \phi_1$ is tangent to the z-axis and has a Puiseux series
\[z = a_1 u^{s_1} + \text{higher order terms} \]
with $r_1 < 1$. The polar ratios of E are the various r_i. They can be determined in terms of a good resolution of E as follows. Let E be the exceptional divisor of such a resolution. Write $E = \bigcup_{E_i \in \mathcal{E}'} c_{E_i} = \text{ord}_{E_i}(f)$ and $a_i = \text{ord}_{E_i}(l)$. Call $a_i \in V$ a rupture point if E_i meets at least three components of $U = U_i \cup V$ where U (resp. V) is the strict transform of $f = 0$ (resp. $l = 0$). Then the set of polar ratios of E is exactly the set of all a_i / a_1 for a a rupture point of V. See [18, 21] and [32, 2].

(4.5) Theorem. Let $f: (C^2, 0) \to (C, 0)$ be a germ of a plane curve singularity.
Consider a germ ϕ with the property that
(1) $\text{ord}(\phi) > r_1^{-1}$ for each polar ratio r_1 of f;
(2) for $i = 1, \ldots, r$ we can write $\phi = \phi_1^{(i)} + \phi_2^{(i)}$ with $\phi_1^{(i)}$ divisible by f, and $\text{ord}(\phi_2^{(i)}) - \text{ord}(\phi_1^{(i)}) - 1$ (i.e. the tangent cone to the curve defined by $\phi_2^{(i)}$ is transverse to E_i).

Then for $0 < |c| < 1$:
\[\text{Spf}(f + c\phi) = \text{Spf}(f + \sum_{i=1}^{r} c_i^{-1}(-1)^{1+i} f_{i1}^{(i)} + a_i/j_1^{1/2} f_{i1}^{(i)} + \ldots, \text{Jacobian} f = \ldots, \text{Jacobian} f = 1, \text{Jacobian} f = 0] \]
where $a_{ij} = j_{ij}/p_{ij} - [j_{ij}/p_{ij}]$.

The proof is similar to the proof of the conjecture and will therefore be omitted. It should be remarked that the conditions of Theorem (4.5) are not as sharp as possible.

(4.6) Example. Consider the polynomial $f(x, y) = (x^4 - y^2)^3(x^2 - y^4)^2$. It has a resolution graph as follows (the numbers between brackets indicate the multiplicities > 1, the arrows correspond to the non-compact components):
\[
\begin{array}{c}
(2) \\
(12)
\end{array}
\]
\[
\begin{array}{c}
(2) \\
(12)
\end{array}
\]
By a small perturbation one can deform the double components either to a smooth branch tangent to the exceptional divisor, or to a cusp which is transverse to the exceptional curve. We deform two of the double curves in the first way and the other two in the second way. This can be done in two essentially different ways: either the two cusp deformations take place on the same exceptional curve or not. This procedure leads to isolated plane curve singularities with the following resolution graphs:
\[
\begin{array}{c}
(13) (26) \quad (14) \quad (13) (26) \quad (26) (13)
\end{array}
\]
\[
\begin{array}{c}
(12) (8) (12) \quad (12) (8) (12)
\end{array}
\]
\[
\begin{array}{c}
(13) (26) \quad (14) \quad (14)
\end{array}
\]

These graphs are not isomorphic, so the topological types of these curve singularities are different. However, they have the same spectrum, as predicted by Theorem (4.5).

§5. The surface case

We will give an outline of the proof of the following

(5.1) Theorem. Let $f: (C^2, 0) \to (C, 0)$ be a germ with 1-dimensional singular locus Σ. Suppose that the transverse type of E along each branch Σ_i of Σ is a simple plane curve singularity (in the sense of Arnold). Then the conjecture (2.2) holds for f.

Proof. We will use the theory of embedded improvements due to Jan Stevens [Sv]. He shows that there exists a proper modification (sequence of blowing-ups) $\pi: Y \to C$ such that $Y \setminus \pi^{-1}(0) \to C \setminus \{0\}$ is biholomorphic and such that the strict transform of $(f = 0)$ has only a very mild type of singularities. E.g. if the transverse type of E is A_1, only ordinary double curves and pinch points remain; the latter only occur in the case where the transverse monodromy is -1.

We need a slightly stronger result: a local normal form for $f = x$ and $x = 1$ after a suitable improvement. As Stevens communicated to me, the methods of [Sv] lead to the following

Proposition. Let $f: (C^2, 0) \to (C, 0)$ be a square-free surface singularity with simple transverse type. Then there exists an embedded improvement $\pi: Y \to C$ such that the singularities of $f = x$ are of the following types: one has normal crossings at the points of $E = \pi^{-1}(0)$ different from the
of Γ the curve $A_1 = \phi(1)$ is tangent to the z-axis and has a Puiseux series
\[z = a^r u^t + \text{higher order terms}\]
with $r_1 < 1$. The polar ratios of f are the various r_i. They can be determined in terms of a good resolution of f as follows. Let E be the exceptional divisor of such a resolution. Write $E = \bigcup_{\nu \in V} E_\nu = \sum_{\nu \in V} E_\nu$ and $a_\nu = \text{ord}_a \nu$. Call $a \in V$ a rupture point if E_ν meets at least three components of $\bigcup_{\nu \in E_n} E_\nu$. Then the set of polar ratios of f is exactly the set of all a_ν/a_ν for a a rupture point of V. See [18 2] and [21-2].

(4.5) Theorem. Let $f: (C^3, 0) \to C$ be a germ of a plane curve singularity. Consider a germ ϕ with the property that

(i) $\text{ord}_a(\phi) > r_i^{-1}$ for each polar ratio r_i of f;

(ii) for $i = 1, \ldots, r$ we can write $\phi = \phi_1^{(1)} + \phi_1^{(2)}$ with $\phi_1^{(1)}$ divisible by f_1^r and $\text{ord}_a(\phi_1^{(1)} = \text{ord}_a(\phi_2^{(2)})$ (i.e. the tangent cone to the curve defined by $\phi_2^{(2)}$ is transverse to E_ϕ).

Then for $0 < |c| < 1$:

$$\text{Sp}(f + c\phi) = \text{Sp}(f) + \sum_{i=1}^r \frac{1}{j_i} f_i^{j_i} + \sum_{j=1}^r \frac{1}{j_i} f_i^{j_i}$$

where $j_i = j_i f_i^{-1} - [j_i f_i^{-1}]_1^{j_i} f_i^{j_i}$.

The proof is similar to the proof of the conjecture and will therefore be omitted. It should be remarked that the conditions of Theorem (4.5) are not as sharp as possible.

(4.6) Example. Consider the polynomial $f(x, y) = (x^2 + y^2)^2 (x^2 - y^2)^2$. It has a resolution graph as follows (the numbers between brackets indicate the multiplicities > 1, the arrows correspond to the non-compact components):

\[
\begin{array}{ccc}
(2) & (2) & (2) \\
(12) & (8) & 0 & (12) \\
2(2) & 2(2) & \\
\end{array}
\]

By a small perturbation one can deform the double components either to a smooth branch tangent to the exceptional divisor, or to a cusp which is transverse to the exceptional curve. We deform two of the double curves in the first way and the other two in the second way. This can be done in two essentially different ways: either the two cusp deformations take place on the same exceptional curve or not. This procedure leads to isolated plane curve singularities with the following resolution graphs:

\[
\begin{array}{cccc}
(13) & (26) & (14) & (13) & (26) & (26) & (13) \\
\text{o} & \text{o} & \text{o} & \text{o} & \text{o} & \text{o} & \text{o} \\
(12) & (8) & (12) & (12) & (8) & (12) & (12) \\
\text{o} & \text{o} & \text{o} & \text{o} & \text{o} & \text{o} & \text{o} \\
(13) & (26) & (14) & (14) & (14) & (14) & (14) \\
\end{array}
\]

These graphs are not isomorphic, so the topological types of these curve singularities are different. However, they have the same spectrum, as predicted by Theorem (4.5).

§5. The surface case

We will give an outline of the proof of the following

(5.1) Theorem. Let $f: (C^3, 0) \to (C, 0)$ be a germ with 1-dimensional singular locus Σ. Suppose that the transverse type of f along each branch Σ_i of Σ is a simple plane curve singularity (in the sense of Arnol'd). Then Conjecture (2.2) holds for f.

Proof. We will use the theory of embedded improvements due to Jan Stevens [Stv]. He shows that there exists a proper modification (sequence of blowing-ups) $\pi: Y \to C^2$ such that $\pi: Y \setminus \pi^{-1}(0) \to C^2 \setminus (0)$ is biholomorphic and such that the strict transform of $(f = 0)$ has only a mild type of singularities. E.g. if the transverse type of f is A_1, only ordinary double curves and pinch points remain; the latter only occur in the case where the transverse monodromy is -1.

We need a slightly stronger result: a local normal form for f after a suitable improvement. As Stevens communicated to me, the methods of [Stv] lead to the following

Proposition. Let $f: (C^3, 0) \to C$ be a square-free surface singularity with simple transverse type. Then there exists an embedded improvement $\pi: Y \to C^2$ such that the singularities of $f \circ \pi$ are of the following types: one has normal crossings at the points of $E = \pi^{-1}(0)$ different from the
intersection points with the strict transforms of the components of Σ, and near these intersection points only the following types can occur:

<table>
<thead>
<tr>
<th>Transverse Type</th>
<th>Normal Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$x_1(x^2 - y^2)$, $x_2(y^2 - x_3 z)$</td>
</tr>
<tr>
<td>D_4</td>
<td>$x_1 x_2 y^2 - y_3^3$, $x_2 y^2 - x_3 z$</td>
</tr>
<tr>
<td>E_6</td>
<td>$x_1 x_2 y^2$</td>
</tr>
<tr>
<td>E_7</td>
<td>$x_1 x_2 y^2 - x_3 z$</td>
</tr>
<tr>
<td>E_8</td>
<td>$x_1 x_2 y^2$</td>
</tr>
</tbody>
</table>

Given a sufficiently general linear form l, we may also assume that $\text{lm} = f^0$.

Once these local forms have been obtained, the same toric methods as in §4 can be used to construct resolutions for f and f_1, and to compare their spectra explicitly.

(5.2) Remark. In the case of transverse type A_1, we can do slightly better and derive a formula for $\text{Sp}(f + c \phi)$ where ϕ is a germ such that $\text{ord}_1(\phi) > r^{(1)}$ for each polar ratio r_i, and which for each i can be written as $\phi_i^{(1)} + \phi_i^{(2)}$ with $\phi_i^{(1)} \in l(\Sigma_i)$ and $\phi_i^{(2)}$ has a tangent cone transverse to Σ_i. As before let $a_i = 0$ (resp 1/2) if $r_i = 1$ (resp -1). Then

$$\text{Sp}(f + c \phi) = \text{Sp}(f) + \sum_{i=1}^r (-a_i/\nu_i) \phi_i$$

with $\nu_i = \text{ord}_0(\phi_i l_i) = \text{ord}_0(\phi_i^{(1)} l_i)$. A similar formula should hold in general if one requires that $\phi_i^{(1)} \in l(\Sigma_i)$, where l_i is chosen in such a way that the transverse type of f along Σ_i does not change when perturbing it by a germ of order a_i.

(5.3) Example. We will use the formula from (5.2) to show two isolated surface singularities which are not topologically equivalent but have the same spectrum. Let L_1, L_2, L_3 be linear forms on \mathbb{C}^2 no three of which are linearly dependent. Put $f = f_1 + f_2 + f_3$. The critical locus of f consists of the six lines L_{1j}, L_{2j}, L_{3j} for $1 \leq j \leq 3$. The transverse type of f along these lines is A_1. Let $\phi_{ij} = x_1 x_2 x_3$ where $(i,j,r,m) = (1,2,3,4)$. Then $\phi_{13} \in l(\Sigma_1)$, and the tangent cone to ϕ_{13} is L_{13}. Define

$\phi_1 = (\phi_{11} + \phi_{12} + \phi_{13} + \phi_{14} + \phi_{15})$

$\phi_2 = (\phi_{21} + \phi_{22} + \phi_{23} + \phi_{24} + \phi_{25})$

$\phi_3 = (\phi_{31} + \phi_{32} + \phi_{33} + \phi_{34} + \phi_{35})$

We put $f_i = f + c \phi_i$, $i = 1,2$. It is clear from (5.2) that f_1 and f_2 have the same spectrum. However their resolution graphs are not even isomorphic. Hence the singularities of $f_1^{1}(0)$ and $f_2^{1}(0)$ at 0 are not homeomorphic by a result of W. Neumann [15].

$\text{resolution graph of } f_1^{1}(0)$

$\text{resolution graph of } f_2^{1}(0)$

§6. The homogeneous case

In this section, we determine the spectrum of a homogeneous polynomial $f \in \mathbb{C}[z_0, \ldots, z_n]$ with a 1-dimensional critical locus. Moreover, under the assumption that the projective hypersurface $\bar{V}(f)$ defined by f has only isolated singularities of Pfaff-Brieskorn type, we derive a formula for $\text{Sp}(f + c \phi)$, $k > d$, which proves our conjecture in this case.

As in §4 we put $f_0 = \sum_{a=1}^r (-1/a) \phi_a$. By the Thom-Sebastian theorem for spectra of isolated singularities we see that the germ f_0^{sing} has spectrum λ^{sing}. Because the spectrum stays constant under deformations with constant Milnor number, any homogeneous polynomial in $\mathbb{C}[z_0, \ldots, z_n]$ with an isolated singularity at 0 has spectrum λ^{sing}.

(6.1) Theorem. Let $f \in \mathbb{C}[z_0, \ldots, z_n]$ be homogeneous of degree d. Suppose that $\bar{V}(f) \subset \mathbb{C}^n$ has only isolated singularities, say P_1, \ldots, P_r. Let $\text{d}_i : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}^n, 0)$ be a local equation for $\bar{V}(f)$ near P_i. Write $\text{Sp}(f) = \{ \lambda_1, \ldots, \lambda_r \}$. Define $\lambda_1 = \text{d}_1 \lambda_1 - \{ \text{d}_1 \lambda_1 \}$. Then

$$\text{Sp}(f) = \sum_{i=1}^r (\lambda_i - \alpha_i/d) \lambda_i$$

Proof. We will use a one-parameter deformation f_t such that $f_0 = f$ and f_1 has an isolated singularity at 0 for $t \neq 0$.

As f is homogeneous, the mixed Hodge structure on the cohomology of its Milnor fibre is isomorphic to the mixed Hodge structure on the cohomology of the affine hypersurface $V(0) \subset \mathbb{C}^n$ defined by the equation $f(0) = 1$. Let l be a linear form on \mathbb{C}^n such that the corresponding hyperplane in f^0 does not pass through any of the P_i. By Sard's theorem, there exists $\epsilon > 0$ such that for $t \in \mathbb{C}$
intersection points with the strict transforms of the components of \(\Sigma \), and near these intersection points only the following types can occur:

<table>
<thead>
<tr>
<th>Transverse Type</th>
<th>Normal Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_4)</td>
<td>(x^4 (z^2 - y^2)), (x^2 (x^2 - z y))</td>
</tr>
<tr>
<td>(D_k)</td>
<td>(x^2 (z^2 - y^2)), (y^2 (x^2 - z y))</td>
</tr>
<tr>
<td>(E_6)</td>
<td>(x^2 (z^2 - y^2))</td>
</tr>
<tr>
<td>(E_7)</td>
<td>(x^2 (z^2 - y^2))</td>
</tr>
<tr>
<td>(E_8)</td>
<td>(x^2 (z^2 - y^2))</td>
</tr>
</tbody>
</table>

Given a sufficiently general linear form \(l \), we may also assume that \(l m = x^2 \).

Once these local forms have been obtained, the same toric methods as in §4 can be used to construct resolutions for \(f \) and \(f_0 \) and to compare their spectra explicitly.

(5.2) Remark. In the case of transverse type \(A_4 \), we can do slightly better and derive a formula for \(\text{Spl}(f + c \phi) \) where \(\phi \) is a germ such that \(\text{ord}_0(\phi) > r_i \) for each polar ratio \(r_i \), and which for each \(l \) can be written as \(\phi^{(1)} + \phi^{(2)} \) with \(\phi^{(1)} \in l(\Sigma)^{m} \) and \(\phi^{(2)} \) has a tangent cone transverse to \(\Sigma_l \). As before let \(\omega_i = 0 \) (resp \(1/2 \)) if \(r_i = 1 \) (resp \(-1 \)). Then

\[
\text{Spl}(f + c \phi) = \text{Spl}(f) + \sum_{\omega_i} (-\gamma_i/\omega_i)^* \theta_{\omega_i}
\]

with \(\omega_i = \text{ord}_0(\phi_i) = \text{ord}_0(\phi_i^{(1)}), \omega_i(\Sigma_l) \). A similar formula should hold in general if one requires that \(\phi_i^{(1)} \in l(\Sigma)^{m} \) where \(m \) is chosen in such a way that the transverse type of \(f \) along \(\Sigma_l \) does not change when perturbing it by a germ of order \(m \).

(5.3) Example. We will use the formula from (5.2) to show two isolated surface singularities which are not topologically equivalent but have the same spectrum. Let \(t, t_1, \ldots, t_k \) be linear forms on \(\mathbb{C}^2 \) no three of which are linearly dependent. Put \(f = t t_1 \cdots t_k \). The critical locus of \(f \) consists of the six lines \(L_{ij} \) if \(i < j \) and the transverse type of \(f \) along these lines is \(A_1 \). Let \(\phi_{ij} = x^2 \) where \((i, j, r, s) = (1, 2, 3, 4) \). Then \(\phi_{ij} \in l(\Sigma_l)^{m} \) if \((i, j) \neq (m, n) \) and the tangent cone to \(\phi_{ij} \) is \(L_{ij} \). Define

\[
\phi_f = \left\{ (\phi_{ij} + \phi_{ik} + \phi_{jk}) + \epsilon (\phi_{ij} + \phi_{ik} + \phi_{jk}) \right\}
\]

Then

\[
\text{Spl}(f) - \sum_{\omega_i}(\lambda_i - 1) \omega_i (\theta_{\omega_i})
\]

Theorem: Let \(f = \sum_{i=1}^n (x_i^k + y_i^k) \) be homogeneous of degree \(d \). Suppose that \(\mathbb{V}(f) \subset \mathbb{P}^n \) has only isolated singularities, say \(P_1, \ldots, P_l \). Let \(f_0 = (x_0, 0) \to (x_0, 0) \) be a local equation for \(\mathbb{V}(f) \) near \(P_i \). Write \(\text{Spl}(f) = \sum_{i=1}^l \lambda_i \). Define \(\phi_{ij} = d_{ij} - (d_1) \). Then

\[
\text{Spl}(f) - \sum_{\omega_i}(\lambda_i - \omega_i) \omega_i (\theta_{\omega_i})
\]

Proof. We will use a one-parameter deformation \(t \), such that \(t_0 = f \) and \(t_i \) has an isolated singularity at \(t = 0 \).

As \(f \) is homogeneous, the mixed Hodge structure on the cohomology of its Milnor fibre is isomorphic to the mixed Hodge structure on the cohomology of the affine hypersurface \(\mathbb{V} \subset \mathbb{C}^m \) defined by the equation \(f(x) = 1 \). Let \(t \) be a linear form on \(\mathbb{C}^m \) such that the corresponding hyperplane in \(\mathbb{P}^m \) does not pass through any of the \(P_i \). By Sard's theorem, there exists \(c > 0 \) such that for \(t \leq c \)
THE SPECTRUM OF HYPERSURFACE SINGULARITIES

Let t act as y^* on $Gr^p_nH^p(V_0)$. This follows from the fact that y^* preserves the cup product form and acts trivially on $H^p_0(V_0)$. We obtain

$$Gr^p_nH^p(V_0) - Gr^p_{n-1}H^p(V_0) = Gr^p_{n-1}H^p(V_0) - Gr^p_{n-2}H^p(V_0)$$

$$= \sum_{k=1}^l (-1)^k Gr^p_nH^{p+k}(V_0) - \sum_{k=1}^l (-1)^k Gr^p_{n-1}H^{p+k}(Z_k)$$

$$= \sum_{k=1}^l Gr^p_nH^p(X(Z_k)) + \sum_{k=1}^l Gr^p_{n-1}H^{p-1}(X(Z_k))$$

in $K^c_{\Sigma(L)}$, where t acts as y^*. This proves our lemma.

For each i we choose a basis $\{e_i\}, j = 1, \ldots, k$, for $H^i(X(Z_k))$ in such a way that $T_i(e_i) = e_{(-\lambda_j),i}$ and that $y^*H^i(X(Z_k))$ is spanned by the e_i. For which $n-2 < \lambda_j \leq n-1$. We also choose a basis $\{f_i\}, i = 1, \ldots, L$, for Γ_i such that $T_i(f_i) = e_{k-j, L}$. Then a basis for W consists of the elements $e_{j,i}$ and ξ_{ij} for $i = 1, \ldots, k$, $j = 1, \ldots, \mu$, and $k = 1, \ldots, d+1$. Observe that $e_{j,i} \in \mathbb{U}$ and that $T_i(e_{j,i}) = e_{k-j, L}$. By the Thae-Steinian result for the Hodge filtration (see [22, Th. 7.3]) we find that $e_{j,i} \in \mathbb{V} = \lambda_j, k-j, d$ or \mathbb{U}. In the case of fixed i, consider the subspace W_i of W spanned by $e_{j,i}, e_{j,i}, \ldots, e_{j,i}$. Let $\lambda_j = n-2-\lambda_j$. Then $Sp(e_{j,i}) = \sum_{k=1}^l (\lambda_j)$, where $Sp(e_{j,i})$ is invariant under the reflection $a \rightarrow (n-2-a)$. Choose p such that $\lambda_j \in (p-2, p)$. Then $e_{j,i} \in (n-2-p)$, which is p and $\xi_{ij} \in e_{k-j, L}$. By the Thae-Steinian result for the Hodge filtration we find that $e_{j,i} \in \mathbb{U}$ and $e_{j,i} \in \mathbb{V}$. Adding up we obtain $sp(e_{j,i}e_{k-j, L}) = (n-p + 1 - k_j)$. Finally, this finishes the proof of the theorem.

(6.3) We can now verify the conjecture in the case that f is homogeneous with one-dimensional singular locus such that each germ g_j (notations as above) is analytically equivalent to a Poincare-Brieskorn polynomial, i.e. a polynomial of the form $\sum x_i^k$. The proof is similar to the case $n = 1$ so we just sketch the argument.

Let $f \in C[Z_0, \ldots, Z_l]$ be our polynomial. Let $\alpha^* = \sum x_i^k$ be the blowing up of the origin. Assume that the coordinates on C^m were chosen in such a way that $(1, 0, \ldots, 0)$ is a singular point of $V(f)$. The strict transform
J.H.M. STEENBRINK

THE SPECTRUM OF HYPERSURFACE SINGULARITIES

let t act as \(y^* \) on \(\mathcal{G}_{n}^{12}(V) \). This follows from the fact that \(y^* \) preserves the cup product form and acts trivially on \(\mathcal{G}_{n}^{12}(V) \).

For each \(1 \) we choose a basis \((\xi_{1j})_j \), \(j = 1, \ldots, n \), for \(H^1(X|\mathbb{C}) \) in such a way that \(T_{1}(\xi_{1j}) = e(-\lambda_{1j})\xi_{1j} \) and that \(y^{*12}(X|\mathbb{C}) \) is spanned by the \(\xi_{1j} \), for which \(n-p-2 < \lambda_{1j} \leq n-p-1 \). We also choose a basis \(\Phi_{1}, \ldots, \Phi_{p} \) for \(A_{1} \) such that \(T_{1}(\Phi_{1}) = e(-k)\Phi_{1} \). Then a basis for \(W \) consists of the elements \(\xi_{1j} \) and \(\xi_{1,j} \Phi_{1} \) for \(j = 1, \ldots, n \), \(j = 1, \ldots, n \), and \(k = 1, \ldots, d \). Observe that \(\xi_{1j} \in \mathcal{G}_{n}^{1} \) and that \(y^{*12}(\xi_{1j}) = \xi_{1j} \). By the Thom-Serre diagram result for the Hodge filtration (see [V2, Th. 7.3]) we find that \(\xi_{1j} \Phi_{1} \in \mathcal{G}_{n}^{1} \Phi_{1} \). Thus the fixed points \((y^{*12})(\xi_{1j}) \) are \(\xi_{1j} \Phi_{1} \in \mathcal{G}_{n}^{1} \Phi_{1} \).

For fixed \(1 \), consider the subspace \(W \) of \(X|\mathbb{C} \) spanned by \(\xi_{1j} \) and \(\xi_{1,j} \Phi_{1} \). We choose \(\lambda_{1j} \) and \(\lambda_{1,j} \) such that \(y^{*12}(\xi_{1j}) = \xi_{1j} \Phi_{1} \). Then \(\text{Sp}(g_{\xi}) = \sum_{j} \lambda_{1j} \xi_{1j} \) because \(\text{Sp}(g_{\xi}) \) is invariant under the reflection \(a \mapsto -a \). Choose \(p \) such that \(\lambda_{1j} < 2p-2 \). Then \(\lambda_{1,j} \leq n-p-2 \leq p-1 \). Let \(k_{1} = \max(k \in \mathbb{Z} \mid \lambda_{1j} + k \leq 2p-1) \). Then \(\xi_{1j} \in \mathcal{G}_{n-p-2}^{1} \) so \(\text{Sp}(\xi_{1j}, F, y) = (n-p) \). For \(k \neq k_{1} \), \(\xi_{1j} \Phi_{1} \in \mathcal{G}_{n-p-2}^{1} + \mathcal{G}_{n-p-1}^{1} \) and \(\xi_{1j} \Phi_{1} \in \mathcal{G}_{n-p+1}^{1} \). Adding these up we obtain

\[
\text{Sp}(\xi_{1j}, F, y) = (n-p-1 - k_{1}/d) \delta_{2}.
\]

Put \(a_{1} = d \delta_{1} \). Then one checks easily that

\[
n - p - 1 + k_{1}/d = a_{1} - a_{1}/d.
\]

This finishes the proof of the theorem.

(6.3) We can now verify the conjecture in the case that \(d \) is homogeneous with one-dimensional singular locus such that each germ \(g_{j} \) (notations as above) is analytically equivalent to a Pham-Brieskorn polynomial, i.e. a polynomial of the form \(\sum_{j} x_{j}^{1} \). The proof is similar to the case \(n = 1 \) so we just sketch the argument.

Let \(f \in \mathcal{G}_{n}^{1} \) be our polynomial. Let \(\alpha_{1}^{n} : 2 \rightarrow a_{1}^{n} \) be the blowing up of the origin. Assume that the coordinates on \(
\]
J.H.M. STEENBRINK

The spectrum of hypersurface singularities

\[\text{Sing.} \text{Publ. Math. Univ. Paris VII, 87-125 (1980)} \]

[Le 2] \text{LÊ DÜNG TRÀNG: Courbes polaires et résolution des courbes planes.}
Preprint École Polytechnique, Paris 1985

90, 11-76 (1987)

Mathematics 8, 1986. Complex Analytic Singularities, 349-361

[N2] NEUMANN, W.D.: A calculus for plumbing applied to the topology of
complex surface singularities and degenerating complex curves.

Lecture Notes in Math. 341, pp. 77-139. Springer 1973

JHES/86/41, August 1988

[SS] SCHERK, J. and J.H.M. STEENBRINK: On the mixed Hodge structure on
(1985)

[Si1] SIERMA, D.: Isolated line singularities. In: Singularities, Arcata

[Si2] SIERMA, D.: The monodromy of (Yosin) series of hypersurface
singularities. Preprint Utrecht July 1986

31, 229-237 (1976)

[St2] STEENBRINK, J.H.M.: Mixed Hodge structure on the vanishing

[St3] STEENBRINK, J.H.M.: Intersection form for quasi-homogeneous
singularities. Compos. Math. 34, 211-223 (1977)

[St-Z] STEENBRINK, J.H.M. and S. ZUCKER: Polar curves, resolution of
singularities and the filtered mixed Hodge structure on the
vanishing cohomology. In: Singularities, Representation of
Algebras and Vector bundles, Lambrecht 1985. Lecture Notes in

Preprint Utrecht, March 1987

References
Σ' of the component of $\Sigma(f)$ corresponding to this singularity of $\hat{V}(f)$ will intersect the exceptional divisor E_n of Σ' in a point P. An affine coordinate neighborhood of P in Σ' is Spec $\mathbb{C}[u_0, \ldots, u_n]$ with $\pi''(z_j) = u_j$. By hypothesis, there is an analytic coordinate transformation ϕ of \mathbb{C}^n such that $\phi(l_1, \ldots, l_n) = \gamma_1^* l_1 + \cdots + \gamma_n^* l_n$ for suitable $\gamma_1, \ldots, \gamma_n$. Thus, for each sufficiently general linear form l in \mathbb{C}^n we can find analytic coordinates y_1, \ldots, y_n centered at P such that $\pi''(l) = \gamma_1^* y_1 + \cdots + \gamma_n^* y_n$ and $\pi''(l) = y_0$. Now we can use the same tactic methods as in §3 to blow up Σ' further and verify the conjecture.

(6.4) The following argument shows that the e_{ij} in the formula depend only on λ_{ij} and the transverse monodromy along Σ'. (Here the transverse type may be an arbitrary isolated singularity.) Near a point P as above, $\pi''(f)$ is of the form $y_0^d y_1^{r_1} y_2^{r_2} \cdots y_n^{r_n}$. The transverse Milnor fibres is given by $g(y_1, \ldots, y_n) = y_0^d$. The vertical monodromy τ which is induced by letting y_0 turn around 0 once in a counterclockwise direction, therefore is equal to $T_{y_0}^d$ and its eigenvalues are the d^{th} powers of the eigenvalues of T_{y_0}. In particular, if τ is unipotent, each eigenvalue of T_{y_0} is a d^{th} root of unity and hence all e_{ij} are zero.

References

TYPE I DEGENERATION OF KUNEV SURFACES

Sampei USUI

Dedicated to Professor Friedrich Hirzebruch
on the occasion of his sixtieth birthday

Introduction.

In this article we determine completely the main components of type I degenerations of Kunev surfaces, i.e., degenerations of Kunev surfaces with finite local monodromy. The main results here were already announced in [Us,4] only with some idea of proofs.

A Kunev surface X is defined as a canonical surface, i.e., a canonical model of a surface of general type, with $\chi (\Omega_X^2) = 2$ and $(\Omega_X^2) = 1$. Ω_X : the dualizing sheaf, which has an involution σ such that $Y := X/\sigma$ is a K3 surface with rational double points (R.D.P., for short). It is well-known that X has only R.D.P. hence Ω_X is a line bundle. It is also known that the linear system $|\Omega_X^2|$ gives a finite Galois cover $f : X \longrightarrow \mathbb{P}^2$.

This research is partially supported by Grant-in-Aid for Scientific Research C-62540122 from the Ministry of Education of Japan, Japan Association for Mathematical Sciences, CNRS of France and Max-Planck-Institut für Mathematik in West Germany.