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Abstract. We prove induced Ramsey theorems in which the monochromatic induced subgraph

satisfies that all members of a prescribed set of its partial isomorphisms extend to automorphisms

of the colored graph (without requirement of preservation of colors).

We consider vertex and edge colorings, and extensions of partial isomorphisms in the set of

all partial isomorphisms between singletons as considered by Babai and Sós [3], the set of all

finite partial isomorphisms as considered by Hrushovski [13], Herwig [9] and Herwig-Lascar [10],

and the set of all total isomorphisms.

We observe that every finite graph embeds into a finite vertex transitive graph by a so called

bi-embedding, an embedding that is compatible with a monomorphism between the corresponding

automorphism groups. We also show that every countable graph bi-embeds into Rado’s universal

countable graph Γ .

1. Introduction

We prove results which extend two different lines of research in graph theory. The first
is the problem of embedding graphs into graphs with prescribed symmetry properties.
Babai and Sós [3] have shown how to embed a given finite graph into a finite transitive
one and Hrushovski [13] has shown that every finite graph H can be embedded into
a finite transitive graph G so that every partial isomorphism of H extends to a total
automorphism of G. Hrushovski’s theorem was needed in the model-theoretic proof of the
small index property of the automorphism group of Rado’s countable universal graph Γ

[12]. Further research in this direction was done by Herwig [9] and Herwig and Lascar [10].
Symmetrized embedding relations between infinite structures were studied on families of
sets by Kojman and Shelah in [15], where, among other results, the existence of a bi-
universal Borel family of sets over a countable set was proved, and by Chatzidakis and
Hrushovski [4] on differential fields.

The second line of research is induced Ramsey theory which investigates the existence
of prescribed induced subgraphs that are monochromatic with respect to vertex or edge
colorings (see [18] and [7] for the history of the subject).
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In the present paper we study the Ramsey-theoretic properties of symmetrized graph
extensions. A typical symmetrized induced partition relation with a target graph H and
a source graph G asserts that not all induced copies of H in G which satisfy that each
member in a prescribed subset of their partial isomorphisms extends to a total automor-
phim of G can be “killed” by vertex or by edge colorings with a fixed finite number r of
colors.

Such results strengthen induced Ramsey theorems, as the collection of symmetrized
copies of a graph H in a graph G is strictly narrower than the collection of all induced
copies of H in G, and they strengthen the symmetrization results in the line of [3,13] by
showing that not only a single symmetrized copy of H in G can be obtained, but many
such copies.

We prove symmetrized finite Ramsey theorems for vertex and for edge colorings, and
provide upper bounds. We also treat the infinite case and prove that for every vertex
coloring of the countable random graph Γ by finitely many colors there is a color which
for every countable graph G contains an induced copy of G all of whose total automor-
phisms extend to automorphisms of Γ . The fact that every countable graph G has at least
one induced symmetrized copy in Γ resembles Uspenskij’s treatment [21,22] of Uryson’s
universal separable metric space U: Uspenskij proved that every separable metric space
X isometrically embeds into U by an embedding that is compatible with a continuous
embedding of the group of auto-isometries of X into the group of auto-isometries of U. It
follows that Aut(U) is a universal topological group of countable weight.

1.1. Symmetrized subgraph relations

By “graph” we always mean a simple graph G = (V, E) = (V (G), E(G)) where V �= ∅ is
the set of vertices and E ⊆ [V ]2 is the set of undirected edges.

A partial isomorphism of a graph H is an isomorphism f : A → B between two induced
subgraphs of H. Suppose H is an induced subgraph of G. A partial isomorphism f of H

is implemented by Aut(G) if there exists f
∗ ∈ Aut(G) such that f ⊆ f

∗. For a set F of
isomorphisms between subgraphs of H we write H ⊆F

G if H is an induced subgraph of
G and every f ∈ F is implemented by Aut(G). Let H ≤F

G mean that H is isomorphic
to some H

� which satisfies H
� ⊆F �

G, where F
� is the set of partial isomorphisms of H

�

that is induced by F via the isomorphism between H and H
�.

Let P = P (H) denote the set of all isomorphisms between finite induced subgraphs
of H, let P1 = P1(H) denote the set of all maps whose domain and range are singleton
subsets of V (H) and let A = A(H) abbreviate Aut(H). Thus, H ⊆P

G means that every
isomorphism between finite induced subgraphs of H extends to a total automorphism of
G, H ⊆P1 G means that every vertex of H can be moved to every other vertex of H by
an automorphism of G, and H ⊆A

G means that every total automorphism of H extends
to an automorphism of G. All three relations above are transitive.

More generally, as the sets P1(H) and P (H) increase with H, if H1 ⊆ H2 ⊆F
G for

F ∈ {P1, P}, then also H1 ⊆F
G. That is, the relations H ⊆P1 G and H ⊆P

G are
downwards hereditary to induced subgraphs of H. If H1 is an induced subgraph of H2,
then not every automorphism of H1 needs to extend to an automorphism of H2 and not
every automorphism of H2 necessarily restricts to an automorphism of H1. There is indeed
no implication between H1 ⊆A

G and H2 ⊆A
G when H1 and H2 are induced subgraphs
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of a graph G with V (H1) ⊆ V (H2). All three relations ⊆F are upwards hereditary on the
right hand side via ⊆A extensions, that is, H1 ⊆F

H2 ⊆A
G implies that H1 ⊆F

G.
The relation H ⊆P

G always implies H ⊆P1 G, and, if G is finite, then H ⊆P
G implies

H ⊆A
G since A(H) ⊆ P (H). Neither of the relations H ⊆P1 G and H ⊆A

G implies the
other or the relation H ⊆P

G.
For infinite H and G it can happen that H ⊆P

G without H ⊆A
G. Let Γ denote

Rado’s countable and universal random graph. Every isomorphism between two finite
induced subgraphs of Γ is implemented by Aut(Γ ), that is, Γ ⊆P

Γ , and hence every
induced subgraph H of Γ satisfies H ⊆P

Γ . However, not every induced subgraph H

of Γ satisfies H ⊆A
Γ . (An example: let H = K ∪ {v}, an infinite clique K with one

additional vertex v, with the neighborhood of v in K both infinite and co-infinite. For
every copy H

� of H in Γ the copy of K obtained by omitting the image of v from H
� is

not a ⊆A-subgraph of Γ . Also see Remark 2 below.)
As every countable graph embeds as an induced subgraph of Γ , it holds that for every

countable graph G,

G ≤P
Γ. (1)

A fundamental theorem of Hrushovski [13] says that to implement all partial iso-
morphisms of a finite graph H some finite G extending H suffices. Recall that a graph
G is (vertex ) transitive if for any two vertices v, u ∈ V (G) there is an automorphism
σ ∈ Aut(G) such that σ(v) = u. Equivalently, G is transitive iff G ⊆P1 G.

Theorem 1. (Hrushovski [13]) For every finite graph H there exists a vertex transitive
finite graph G such that

H ⊆P
G. (2)

Denoting the number of vertices of H by n, the upper bound on the size of G provided
by Hrushovski’s proof was (2n2n)!. A much better upper bound of 22n log n follows from the
simpler proof of Hrushovski’s theorem due to Herwig and Lascar [10]. (Here and later in
the paper log denotes logarithm with base 2). Denoting the maximal degree of a vertex in
H by k, the size of G can be bounded by (nk)k ≤ n

2n. A slighly better bound of (3en/4)n

is also provided in the paper by Herwig and Lascar. An exponential lower bound on the
size of G for a general H was provided by Hrushovski.

There is a natural strengthening of the relation ⊆A between graphs. In analogy to
[15] we call an embedding e of a graph H as an induced subgraph into a graph G a
bi-embedding if there is a group homomorphism h : Aut(H) → Aut(G) such that for all
σ ∈ Aut(H), e ◦ σ = h(σ) ◦ e. Clearly, such a homomorphism h is necessarily injective. If
H is bi-embeddable into G, we write H ≤bi G. If H is an induced subgraph of G, then
H is a bi-embedded subgraph of G (H ⊆bi G) if the inclusion map from H to G is a
bi-embedding. The relations H ≤bi G and H ⊆bi G are transitive.

1.2. Induced partition relations

For graphs H and G the symbol G � (H)d
r with natural r ≥ 1 and d ∈ {1, 2} means that

for every coloring of vertices of G, if d = 1, or of edges of G, if d = 2, by r colors, there
exists a monochromatic induced copy of H in G. It is customary to omit r = 2 from this
notation.
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The induced Ramsey theorem [18] states that for every finite graph H, d ∈ {1, 2}, and
finite r ≥ 1 there exists a finite graph G such that G � (H)d

r . For r = 2 the upper bound
on |G| for H with n vertices is 2cn(log n)2 (see [14] and [6]).

We strengthen this relation by requiring that some of the partial isomorphisms of the
monochromatic induced copy of H are implemented by Aut(G). For a set F of partial
isomorphisms of H the symbol

G �F (H)d
r

means the same as above with the additional condition that when identifying H with its
monochromatic copy in G, every partial isomorphism in F is implemented by Aut(G).

G �bi (H)d
r

means that the embedding of H into G as a monochromatic induced subgraph of G is a
bi-embedding and

G �F
bi (H)d

r

means that the monochromatic copy H
� of H in G satisfies both H

� ⊆bi G and H
� ⊆F

G.
The properties of the relations ⊆F which were discussed above give that G �P1 (H)d

r

and G �P (H)d
r are downwards hereditary to induced subraphs of H and that for an

arbitrary set F of partial isomorphisms of H the two relations H ≤F
H
� and G �A (H �)d

r

together imply G �F (H)d
r . G ≤A

G
� and G �F (H)d

r together imply G
� �F (H)d

r .
G �bi (H)d

r implies G �A (H)d
r . The relation G �bi (H)d

r is upward hereditary with
respect to extensions of G in which G is bi-embedded (bi-extensions) and downward
hereditary with respect to bi-embedded subgraphs of H.

1.3. The results

We prove finite and infinite symmetrized induced Ramsey theorems for each choice of
d ∈ {1, 2} and F ∈ {P1, A, P}. We prove that for every finite graph H and natural
number r ≥ 1 there exists a finite graph G so that

G �F (H)d
r . (3)

Upper bounds on the number of vertices in G are given in the number of vertices of H

and r in each case for finite H. In the case d = 1 and F = P1, for example, the size of G is
bounded asymptotically by |H|(2+ε)r for arbitrarily small ε > 0, whereas with F = P and
d = 1 the bound jumps up to the vicinity of the bound in the standard induced Ramsey
theorem for edge colorings.

In the case of vertex colorings, we actually obtain induced Ramsey theorems for the
partition relations of the form G �P

bi (H)1
r.

As mentioned above, not every induced subgraph G of the infinite random graph Γ

satisfies G ⊆A
Γ . However, we prove that for every countable graph G and r > 0,

Γ �bi (G)1
r. (4)

In fact, for every coloring of the vertex set of Γ by finitely many colors, a single color
contains bi-embedded copies of all countable graphs.

We also observe that the standard proof of the induced bipartite Ramsey theorem due
to Nešetřil and Rödl actually gives its symmetrized form.
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2. Vertex Colorings

Definition 1. a) Suppose G = (V, E) is a graph and for every v ∈ V , Hv = (Uv, Ev) is
a graph.

�
G Hv is the graph whose vertex set is {(v, u) : v ∈ V, u ∈ Uv} and in which

{(v1, u1), (v2, u2)} is an edge iff {v1, v2} ∈ E or (v1 = v2 and {u1, u2} ∈ Ev1).
b) If Hv is a fixed graph H for all v ∈ V , then

�
G Hv is denoted by G⊗H and called

the wreath product of G with H.
c) The r-th wreath power of a graph G, denoted by G

⊗r, is defined inductively by
G
⊗1 = G and G

⊗(r+1) = G⊗G
⊗r.

Observe that |V (G⊗r)| = |V (G)|r.

Lemma 1. Suppose that G is vertex transitive. Then for all natural r ≥ 1,

G
⊗r is vertex transitive and G

⊗r �bi (G)1
r. (5)

Proof. Suppose G is vertex transitive. We prove (5) by induction on r ≥ 1. The case r = 1
is trivial.

Given a vertex coloring of G
⊗(r+1) by r+1 colors, assume first that for every v ∈ V (G)

there exists a vertex u(v) ∈ V (G⊗r) so that (v, u(v)) is red. The graph G
� spanned in

G
⊗(r+1) by {(v, u(v)) : v ∈ V (G)} is isomorphic to G and monochromatic.
We show that

e : G → G
⊗r+1; v �→ (v, u(v))

is a bi-embedding. Choose a distinguished vertex u0 ∈ V (G⊗r). By the induction hypoth-
esis, G

⊗r is vertex transitive and hence for each v ∈ G there is an automorphism τv of
G
⊗r that maps u(v) to u0. Let τ be the automorphism of G

⊗r+1 that is defined by letting
τ(v, u) = (v, τv(u)) for all v ∈ G and all u ∈ G

⊗r.
We define a homomorphism h : Aut(G) → Aut(G⊗r+1) as follows: Every σ ∈ Aut(G)

induces an automorphism σ of G
⊗r+1 by the formula

σ(v, u) := (σ(v), u).

Note that the map σ �→ σ is a homomorphism from Aut(G) into Aut(G⊗r+1). For each
σ ∈ Aut(G) let

h(σ) := τ
−1 ◦ σ ◦ τ.

Then h is is a homomorphism and 1-1.
For each v ∈ V (G) we have

(h(σ) ◦ e)(v)) = (τ−1 ◦ σ ◦ τ)(v, u(v)) = (τ−1 ◦ σ)(v, u0)

= τ
−1(σ(v), u0) = (σ(v), u(σ(v)) = (e ◦ σ)(v).

A similar but easier argument establishes that G
⊗(r+1) is vertex transitive.

If the assumption above fails, then there is some v ∈ V (G) so that (v, u) is not red
for all u ∈ V (G⊗r). The graph H spanned by {(v, u) : u ∈ V (G⊗r)} is isomorphic to G

⊗r

and is colored by the given coloring by at most r colors. By the induction hypothesis,
there is a monochromatic G

� ⊆bi H which is isomorphic to G. Every automorphism of
H extends to an automorphism of G

⊗(r+1) by making the extension act as the identity
function outside H. Since this way of extending automorphisms gives a homomorphism
from Aut(H) into Aut(G⊗r+1), we have H ⊆bi G

⊗r+1. Now transitivity of ⊆bi implies
G
� ⊆bi G

⊗r+1, finishing the proof of the lemma.
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2.1. Finite graphs

Theorem 2. There is a constant c such that for every graph H with n vertices and all
r ≥ 1 there is a vertex transitive graph G with no more than c

r
n

2r vertices so that

G �P1 (H)1
r.

Proof. Given a graph H with n vertices, find by [3] a vertex transitive graph H1 with at
most cn

2 vertices that contains H as an induced subgraph. The graph G := H
⊗r
1 is vertex

transitive, |G| ≤ c
r
n

2r and G �A (H1)1
r by Lemma 1. As H ⊆P1 H1, G �P1 (H)1

r follows.

We now turn to symmetrized partition results involving the relations ⊆P and ⊆bi.
Using a slight variation of the Herwig-Lascar proof of Hrushovski’s theorem, we will see
that every finite graph bi-embeds into a finite graph that is vertex transitive. Let us first
observe that every graph bi-embeds into a small regular graph.

Lemma 2. Every graph H of size n bi-embeds into an n-regular graph of size 2n, i.e.,
into a graph of size 2n in which every vertex has exactly n neighbors.

Proof. Consider the disjoint union H0 ∪H1 of two copies of H. For i ∈ 2 let fi : H → Hi

be an isomorphism. The graph G obtained from H0 ∪H1 by adding all the edges of the
form {f0(v), f1(w)} with v, w ∈ V (H) but {v, w} �∈ E(H) is n-regular and of size 2n.

Every σ ∈ Aut(H) induces automorphisms σ0 and σ1 of H0 and H1, respectively.
Now σ0 ∪ σ1 is an automorphism of G. The map assigning to every σ ∈ Aut(H) the
automorphism σ0 ∪ σ1 of G is a homomorphism.

Lemma 3. For every finite graph H of size n there is a vertex transitive graph G of size
at most 22n log n such that both H ⊆P

G and H ⊆bi G hold.

Proof. Let H be a graph of size n. By the previous lemma, H is a bi-embedded subgraph
of an n-regular graph H

� of size 2n. In the case of a regular graph H
�, the Herwig-Lascar

proof [10] of Hrushovski’s theorem proceeds as follows:
Let X = E(H �). Since H

� is n-regular and of size 2n, |X| = n
2. Let G be the graph on

the set V (G) = [X]n of vertices where two distinct sets A, B ∈ [X]n are connected by an
edge iff A ∩ B �= ∅. The size of G is bounded by n

2n = 22n log n, which is as promised in
the statement of the lemma.

The map
f : V (H �) → V (G); v �→ {e ∈ X : e is adjacent to v}

is an embedding of H
� into G as an induced subgraph.

Herwig and Lascar now show that f witnesses H
� ≤P

G, implying that f � V (H)
witnesses H ≤P

G. We want to show that f is a bi-embedding. Let σ ∈ Aut(H �). Let
σ
∗ be the permutation of X that maps every edge {v, w} of H

� to {σ(v), σ(w)}. The
permutation σ

∗ induces an automorphism h(σ) of G by the formula

h(σ)({e1, . . . , em}) = {σ∗(e1), . . . σ
∗(em)}.

It is easily checked that h : Aut(H �) → Aut(G) is a homomorphism.
For all σ ∈ Aut(H �) and all v ∈ V (H �) we have

(h(σ) ◦ f)(v) = σ
∗(f(v)) = f(σ(v)).

It follows that f is indeed a bi-embedding. Now by the transitivity of ⊆bi, f � V (H) is a
bi-embedding, too.
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Theorem 3. For every finite graph H with n vertices and r ≥ 1 there exists a vertex
transitive graph G with no more than 22rn log n vertices such that

G �P
bi (H)1

r.

Proof. Given a graph H with n vertices, find by Lemma 3 a vertex transitive graph Z such
that H ⊆P

Z, H ⊆bi Z, and |V (Z)| ≤ 22n log n. The graph G := Z
⊗r is vertex transitive

and G �bi (Z)1
r by Lemma 1. As H ⊆P

Z and H ⊆bi Z, G �P
bi (H)1

r follows.

Hrushovski [13] showed that an exponential lower bound on |G| in terms of |H| is
required for the relation H ⊆P

G, even if one restricts from P to permutations of free
subsets of H. Thus, clearly, an exponential lower bound is required in the partition relation
just proved.

2.2. The random graph Γ

Lemma 4. Every countable graph bi-embeds into the random graph Γ .

Proof. Given a countable graph G, define by induction on n a sequence of countable
graphs G

n = (V n
, E

n), starting with G
0 = G and satisfying that for all n, G

n is an
induced subgraph of G

n+1. Let

V
n+1 := V

n ∪ {vn+1
X : X ⊆ V

n and |X| is finite}

with pairwise distinct v
n+1
X and

E
n+1 := E

n ∪ {(v, v
n+1
X ) : v

n+1
X ∈ V

n+1 \ V
n and v ∈ X}.

Clearly, G
∞ := (V ∞

, E
∞) := (

�
n∈N V

n
,
�

n∈N E
n) is countable, and G = G

0 is an
induced subgraph of G

∞.
Let us see that G

∞ is isomorphic to Γ . For any two disjoint finite sets X, Y ⊆ V
∞ there

is some n so that X ∪ Y ⊆ V
n and now the vertex v

n+1
X ∈ V

n+1 is connected by edges
to all points in X and to no point in Y . This property, together with the countability of
G
∞, implies that G

∞ ∼= Γ .
Finally, let σ ∈ Aut(G) be given. Let σ

0 := σ and let σ
n+1 ∈ Sym(V n+1) be the unique

permutation of V
n+1 which extends σ

n and satisfies σ
n+1(vX) = vσn[X]. Now σ

∞ =
�

n σ
n

is an automorphism of G
∞ which extends σ.

A straight-forward induction on n shows that the maps

h
n : Aut(G) → Aut(Gn); σ �→ σ

n

are group homomorphisms. It follows that also

h
∞ : Aut(G) → Aut(G∞); σ �→ σ

∞

is a homomorphism of groups. Hence G ⊆bi Γ .

This provides an easy direct proof of the fact, due to Truss [20], that the infinite sym-
metric group Sym(N), which is the automorphism group of a countably infinite complete
graph, embeds into Aut(Γ ). Note that every automorphism group of a countable structure
in a countable vocabulary can be realized as an automorphism group of a countable graph
(see [11, Theorem 5.5.1] and [19, Lemma 4.2.2]).
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Remark 1. The embedding of G = G
0 as a ⊆A-subgraph of G

∞ obtained in the proof of
Lemma 4 satisfies the additional property that every vertex v ∈ V

∞ \V
0 has only finitely

many neighbors in V
0. Since we only add countably many vertices to G

0 when passing to
G
∞, in order to extend every automorphim of G

0 to G
∞ it is necessary that every vertex

in V
∞ \ V

0 has a neighborhood in G
0 whose orbit under Aut(G0) is countable. This is

clearly satisfied by the finite neighborhoods of our construction.
Another way to embed G symmetrically into Γ is to realize not only all finite sets but

all definable subsets of V
n (definable in G

n with parameters from V
n) as neighborhoods of

vertices in V
n+1\V

n. This works because the collection of definable subsets of a countable
graph is countable and closed under automorphisms.

In this case, there are vertices in V
∞ \ V

0 whose set of neighbors in V
0 is infinite.

Remark 2. If G is a countable graph and H ⊆A
G, then, as indicated above, every neigh-

borhood of a vertex v ∈ V (G) \ V (H) in H has a countable orbit under Aut(H), namely
the collection of neighborhoods in V (H) of the images of v under extensions of automor-
phisms of H to G.

If H is a countably infinite complete graph or a countably infinite graph without any
edges, then the only sets with a countable Aut(H)-orbit are the finite sets and their
complements. These sets are also exactly the definable sets.

More generally, the Kueker-Reyes Theorem [16] states that whenever M is a countable,
homogeneous structure and A is a subset of the underlying set M of M that has an orbit
of size < 2ℵ0 under the action of the automorphism group of M, then there is a finite
sequence (a1, . . . , an) of elements of M such that every automorphism of M that fixes all
the ai, i ∈ {1, . . . , n}, leaves the set A invariant. By the homogeneity of M, every finite
partial isomorphism of M extends to an automorphism of M. It follows that if a, b ∈ M

have the same type over (a1, . . . , an), then either both a and b are elements of A or both
are not. In other words, A is the union of a collection of subsets of M that are definable
in M with parameters among a1, . . . , an.

Applying this to the random graph Γ , we see that for every set A ⊆ V (Γ ) with a
countable Aut(Γ )-orbit, there are vertices v1, . . . , vn ∈ V (Γ ) such that A is a union of
subsets of V (Γ ) definable with parameters among v1, . . . , vn. But by elimination of quan-
tifiers, every set subset of V (Γ ) that is definable in Γ with parameters among v1, . . . , vn

is a Boolean combination of neighborhoods of the vi and singletons of the form {vi}. In
particular, there are only finitely many such sets. It follows that A itself is a Boolean
combination of neighborhoods of the vi and singletons of the form {vi} and therefore
definable.

So, for some countable graphs, for instance homogeneous graphs with quantifier elim-
ination, the definable sets are the only sets of vertices that have a countable orbit under
the action of the automorphism group of the graph. It follows that in general, in our
construction of G

∞ the collection of definable subsets of G = G
0 is the largest collection

of sets that can serve as neighborhoods in G
0 of vertices in the extension G

∞. This obser-
vation also places significant restrictions on how the random graph or, for example, the
countably infinite complete graph can sit inside a countable graph as a ⊆A-subgraph.

Theorem 4. For every natural r ≥ 1,

Γ �P
bi (Γ )1

r.

Thus for every vertex coloring of Γ by r colors, there is a single color which contains
induced symmetrized copies of all countable graphs.
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Proof. Let r ≥ 1 be given. Γ
⊗r is countable, and as Γ is vertex transitive, Γ

⊗r �bi (Γ )1
r

by Lemma 1. Fix G ⊆bi Γ with G isomorphic to Γ
⊗r by Lemma 4. For every vertex

coloring of Γ by r colors, there is an induced monochromatic copy of Γ , G
� ⊆bi G ⊆bi Γ .

For every countable graph H it holds that H ≤bi G
� by Lemma 4. So by transitivity of

⊆bi we have Γ �bi (Γ )1
r. Since H ⊆P

Γ holds for every induced subgraph H of Γ , we are
done.

3. Edge Colorings

It is well known [5] that Γ �� (Γ )2
2. In particular, there is a countable graph H such that

for all countable graphs G and all sets F of partial isomorphisms of H, G �F (H)2
2 fails.

Therefore, in the case of edge colorings, we are only interested in finite graphs.

Theorem 5. There is a constant c such that for every finite graph H with n vertices there

is a graph G with no more than 22cn(log n)2

vertices so that

G �P (H)2
2.

Proof. By [14] (see also [6]), there is a constant d such that given a graph H with n vertices,
we can fix a graph G

� with no more than m := 2dn(log n)2 vertices such that G
� � (H)2

2.
By Lemma 3, fix a graph G with at most 22m log m vertices such that G

� ⊆P
G. Thus, for

some constant c,

|V (G)| ≤ 22m log m = 22dn(log n)2+1dn(log n)2

= 22dn(log n)2+log(dn(log n)2)+1
= 22dn(log n)2+log d+log n+2 log log n+1

≤ 22cn(log n)2

(6)

We check that G �P (H)2
2. Given an edge-coloring of G by 2 colors, consider its

restriction to the edges of G
�. As G

� � (H)2
2, there is a monochromatic H

� ⊆ G
� which

is isomorphic to H. As the relation ⊆P is hereditary on the left hand side to induced
subgraphs, we have H

� ⊆P
G.

We conclude this section with the following:

Theorem 6. For every finite graph H and every finite number r of colors there is a finite
graph G such that

G �P (H)d
r

holds for both d = 1 and d = 2.

Proof. By induction on r, we show that there is a finite graph G1 such that G1 �P (H)2
r.

Namely, suppose that for some r ≥ 1, we have a finite graph F such that F �P (H)2
r.

This is trivially satisfied if r = 1. By Theorem 5 there is a finite graph F
� such that

F
� �P (F )2

2. We claim that F
� �P (H)2

r+1. Given a coloring c of the edges of F
� with

r + 1 colors, define a coloring c
� of the edges of F

� with two colors by letting c
�(e) = 0 if

c(e) is one of the first r colors of c and c
�(e) = 1 if c(e) is the last color of c. By the choice

of F
�, there is copy of F that is a c

�-monochromatic ⊆P -subgraph of F
�. On this copy of

F , c assumes at most r different values. Hence, by F �P (H)2
r, this copy of F contains
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a c-monochromatic ⊆P -subgraph isomorphic to H. By the transitivity of ⊆P , this shows
F
� �P (H)2

r+1.
Now fix r as in the theorem and choose a finite graph G1 such that G1 �P (H)2

r. By
Hrushovski’s theorem there is a finite, transitive graph G2 such that G1 ⊆P

G2. Now let
G = G

⊗r
2 .

By Lemma 1, G �A (G2)1
r. So, since H ⊆P

G2 ⊆A
G, it holds that G �P (H)1

r. The
relation G �P (H)2

r holds because G2 �P (H)2
r holds and G2 ≤A

G.

3.1. Bipartite graphs

A bipartite graph is a triple B = �L, R, E� where �L ∪ R, E� is a graph and |e ∩ L| =
|e ∩ R| = 1 for all e ∈ E. L is the left side of B and R is the right side of B. We assume
automorphisms and partial isomorphisms of bipartite graphs to preserve sides.

Hrushovski’s theorem also holds for bipartite graphs. This follows either from adapting
the original proof to bipartite graphs, or from Herwig’s extension [9] of Hrushovski’s
theorem to relational structures. Thus, one can obtain the analog of Theorem 5 via a
similar proof, using Nešetřil and Rödl’s bipartite induced Ramsey theorem [17]. However,
it is not necessary to use either Hrushovski’s or Herwig’s theorem at all in this case, as
the monochromatic induced bipartite graph given by the proof in [17] is symmetrized.
This is shown in the proof of Theorem 7.

With vertex colorings of bipartite graphs the situation is slightly different. One can
color all vertices in L by red and all vertices in R by blue to avoid monochromatic
bipartite subgraphs altogether. Theorem 8 below shows that monochromatic sides can be
guaranteed on some symmetrized induced bipartite subgraph.

Definition 2. The n-th symmetric power of a bipartite graph B = �L, R,E�, introduced
in [18] (see also [7] p. 119), denoted by B

(n), is the bipartite graph �Ln
, R

n
, E

(n)� where
{v̄, ū} ∈ E

(n) iff for all i < n it holds that {v(i), u(i)} ∈ E.

The mapping ��v(i) : i < n�, �u(i) : i < n�� �→ �{v(i), u(i)} : i < n� is a natural 1-1
correspondence between E

(n) and E
n, the set of all sequence of length n of edges from E.

For bipartite graphs, the notions bi-embedding, ⊆bi, and �bi have the obvious meaning.

Theorem 7. For every finite bipartite graph B = �L, R,E� and every finite number r of
colors there exists a number n so that B

(n) �bi (B)2
r.

Proof. First, let us assume that B has no isolated vertices. This can be achieved by adding
a unique neighbor in L to every isolated vertex in R and vice versa. The original graph is
bi-embedded in this extension without isolated vertices.

Let n = HJ(|E|, r), the Hales-Jewett number of |E| and r. A coloring of E
(n) by r

colors can be considered as a coloring of E
n via the natural correspondence above.

Let W ∈ (E ∪ {X})n be a word such that I = {i : W (i) = X} �= ∅ and so that
the combinatorial line defined by W in E

n is monochromatic. The line defined by W is
{W (e) : e ∈ E} where W (e) is obtained from W by substituting e for every occurrence
of X in W .

Define an embedding φ of B into B
(n) as follows. For v ∈ L let

φ(v) = �W (i) ∩ L : i ∈ n \ I� ∪ �v : i ∈ I�,
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that is, the sequence of left vertices from W (i) for all i such that W (i) �= X and constantly
v for all i ∈ I. For u ∈ R, φ(u) is defined similarly.

As B has no isolated vertices, the map φ clearly embeds B into B
(n) as an induced

subgraph. Furthermore, this subgraph is monochromatic, as the combinatorial line defined
by W is. We argue that this induced monochromatic copy of B is also symmetrized.
Indeed, let σ ∈ Aut(φ(B)) be given, and let σ̄ : L

n ∪R
n → L

n ∪R
n be defined as follows:

for v̄ = �v(i) : i < n�,

σ̄(v̄) = �v(i) : i ∈ n \ I� ∪ �σ(v(i)) : i ∈ I�,

and similarly for ū ∈ R
n. This is an automorphism of B

(n): if {v̄, ū} ∈ E
(n) then

{v̄(i), ū(i)} ∈ E for all i < n. For i ∈ n \ i it holds that σ̄(v̄)(i) = v̄(i) and σ̄(ū)(i) =
ū(i), while for i ∈ I it holds that {σ̄(ū)(i), σ̄(v̄)(i)} ∈ E because σ ∈ Aut(φ(H)), so
{σ̄(ū), σ̄(v̄)} ∈ E

(n). Similarly, non-edges are preserved. Clearly, σ̄ extends σ. Also, the
uniformity of the definition of σ from σ shows that the map σ �→ σ is a homomorphism
between the automorphism groups of B and B

(n).

Theorem 8. For every finite bipartite graph B and r > 0 there exists n such that for
every coloring of vertices of B

(n) by r colors there is a bi-embedded bipartite subgraph of
B

(n) that is isomorphic to B and whose left side and right side are both monochromatic
(possibly of different color).

Proof. Assume, as in the previous proof, that B = �L, R, E� has no isolated vertices
and let n = HJ(|E|, r2). Given a vertex coloring c of B

(n) by r colors, define an edge
coloring of B by r

2 colors by assigning the color �c(e∩L
n), c(e∩R

n)� to an edge e ∈ E
(n).

By the previous theorem, there is a bi-embdedded bipartite subgraph B
� of B

(n) that is
isomorphic to B and all whose edges have the same color. But this implies that the set
of vertices of B

� on the left side and the set of vertices of B
� on the right side are both

monochromatic.

4. Discussion

Hrushovski considers in [13] the case F = {f}, that is, when one is required to implement
by Aut(G) a single arbitrary partial isomorphism of H, and proves:

Theorem 9. There are constants c < c
� so that if one defines g(n) to be the least m such

that for every graph H with n vertices and every isomorphism f between subgraphs of H

there exists a graph G with at most m vertices so that H ⊆{f}
G, then

c(n log n)1/2 ≤ log g(n) ≤ c
�(n log n)1/2

.

It is of interest to know if an upper bound in the order of magnitude of Hrushovski’s
function g can be found for the number of vertices of G in G �{f} (H)1

2, for arbitrary f .
Considering the fact that we have a polynomial upper bound for the size of G in

G �P1 (H)1
2 but that, by Theorem 9, even for a single unrestricted partial isomorphism

f we have a super-polynomial lower bound for the size of G in G �{f} (H)1
2, it would be

interesting to know if there is a number k such that the upper bound for G �Pk (H)1
2 is

polynomial but the lower bound for G �Pk+1 (H)1
2 is not polynomial, where, of course,

Pk = Pk(H) is the set of all isomorphisms between two subgraphs of H, each of cardinality
k.
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The upper bound of 2cn(log n)2 for the size of G in G � (H)2, where n is the size of H,
was obtained in [14] using a randomly constructed graph. Randomly constructed graphs
tend to be rigid. Fox and Sudakov [6] recently re-established this upper bound using the
explicit Paley graph, which has quite a few automorphisms. Can one find a better upper
bound than the one obtained in Theorem 5? Can pseudo-random bipartite graphs be used
to give a good upper bound for the bipartite graph relation, instead of the upper bound
coming from the Hales-Jewett theorem?

A question that is not so much concerned with upper bounds is whether one can prove
a version of our Theorem 5 on edge colorings that yields a monochromatic bi-embedded
subgraph.

Finally, it is of interest to find lower bounds for the vertex-coloring theorems. Is the
n

r bound tight for vertex transitive graphs in Theorem 2?

The authors thank Noga Alon for directing them to references [1–3,6] and for his
detailed explanations of the results in them. The research on this paper has been supported
by a German-Israeli Foundation Grant number I-802-195.6/2003.
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3. László Babai and Vera T. Sós. Sidon sets in groups and induced subgraphs of Cayley graphs.
European J. Combin. 6 (1985), no. 2, 101–114.

4. Z. Chadzidakis and E. Hrushovski. Model theory of differential fields. Tran. AMS. 351(8)

(1999) 2997–3071.
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