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Abstract. It is consistent with the axioms of set theory that for every metric
space X which is isometric to some separable Banach space or to Urysohn’s
universal separable metric space U the following holds:

(?)X There exists a nowhere meager subspace of X of cardinality
ℵ1 and any two nowhere meager subsets of X of cardinality ℵ1 are
almost isometric to each other.

As a corollary, it is consistent that the Continuum Hypothesis fails and the
following hold:
(1) There exists an almost-isometry ultrahomogeneous and universal element

in the class of separable metric spaces of size ℵ1.
(2) For every separable Banach space X there exists an almost-isometry

conditionally ultrahomogeneous and universal element in the class of
subspaces of X size ℵ1.

(3) For every finite dimensional Banach space X, there is a unique universal
element up to almost-isometry in the class of subspaces of X size ℵ1.

1. Introduction

In this paper we deal with metric similarity, metric uniqueness and metric uni-
versality in models of set theory that violate the Continuum Hypothesis (CH). Orig-
inally motivated by questions about metric universality, we prove the consistency
with the usual axioms of set theory of a strong statement about the homogeneity
of separable Banach spaces and of Urysohn’s universal separable metric space.

Let (X, d) be the underlying metric structure of some separable Banach space,
and consider the following problem: suppose A ⊆ X satisfies that A ∩ U is of the
second category in U for every nonempty open U ⊆ X. Can one find a set B ⊆ X
of the same cardinality as A, satisfying the same condition as A, such that B is not
in the bi-Lipschitz autohomeomorphism group orbit of A?

If one assumes the Continuum Hypothesis, then such a B is very easily found:
by CH the cardinality of A is necessarily equal to |X| and either X itself or X \{0}
is not bi-Lipschitz homeomorphic to A.

The main result below shows that without appealing to an additional axiom, like
CH, finding B is impossible, because it is consistent that for every separable Banach
space X and two nowhere meager sets A,B ⊆ X with |A| = |B| = ℵ1 not only that
A can be carried over onto B by an autohomeomorphism of X, it actually holds
that A maps onto B by autohomeomorphisms of X which are arbitrarily close to
being isometries, namely are bi-Lipschitz with Lipschitz constants arbitrarily close
to 1.
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To present better the picture at large, we begin by describing the subject in the
related setting of linearly ordered sets. The reader may consult the introduction to
[8] for additional introductory material.

1.1. Order isomorphism and universality. Up to order isomorphism there is
a unique countable dense subset of R. The ordertype of such a set is the unique
ultrahomogeneous and universal member in the class of countable linearly ordered
sets. Consequently, R is universal in the class of separable linearly ordered sets
and its ordertype is determined uniquely as the completion of the countable ul-
trahomogeneous and universal ordering. These results were proved of course by
Cantor. If one does not assume completeness, then by Sierpinski [15], there are
22ℵ0 continuum dense subsets of R that are pairwise order incomparable.

Under CH, κ-dense subsets of R exist only for κ ∈ {ℵ0, 2ℵ0}. But as is well-known
since Cohen’s invention of forcing, also the negation of the Continuum Hypothesis is
consistent with the axioms of set theory — in fact, the continuum may be arbitrarily
large. Thus, for every cardinal κ > ℵ0 it is meaningful to inquire the consistency
with the axioms of the statement, and of the negation of the statement, that 2ℵ0 > κ
and all κ-dense subsets of R are order-isomorphic to each other. The same applies
to the statement of the existence of a universal separable linearly ordered set of
cardinality κ, which, of course, follows from the previous one.

In Cohen extensions, as well as in in Solovay’s random real extensions, with
arbitrary large continuum, neither of these statements holds for any κ, ℵ0 < κ < 2ℵ0

(see [7, 8]). Thus, the negations of these two statements (for an arbitrary κ > ℵ0)
are easily consistent, being valid in standard models for the negation of CH.

Positive consistency was somewhat harder. Baumgartner, in a classic paper in
set theory [3], proved the consistency of 2ℵ0 = ℵ2 and any two ℵ1-dense subsets
of R are order isomorphic to each other. Baumgartner’s method necessitated the
validity of CH in intermediate models of his forcing iteration, and its novelty at the
time was further supported by the fact that the argument could not be easily lifted
to ℵ2. In fact, the consistency of Baumgartner’s statement for ℵ2-dense sets is still
open.

Abraham and Shelah have shown that Baumgartner’s result did not follow from
Martin’s Axiom [2]. Abraham, Rubin and Shelah have investigated many variants
of Baumgartner’s result and have also proved that Baumgartner’s statement for ℵ1-
dense sets was consistent with continuum larger than ℵ2 [1]. Later it was observed
that Baumgartner’s result followed from the Proper Forcing Axiom [4], but this
gave no information for κ > ℵ1, as PFA was later shown to imply that 2ℵ0 = ℵ2

(see [16] and [17]).
Recently it was shown by Moore [11] that PFA also implies Shelah’s Basis Con-

jecture for linear orders, i.e., there are five uncountable linear orders such that every
uncountable linear order contains a copy of one of the five.

The problem of universality at ℵ1 in the class of all (rather than only separa-
ble) linearly ordered sets has also been investigated. If CH holds, then there is a
saturated linear order (unique for that property) of cardinality ℵ1, which is also
universal. However, since the existence of a universal linearly ordered set of car-
dinality ℵ1 implies the existence of a universal separable one, in Cohen or Solovay
extensions there are no universal linearly ordered sets of cardinality ℵ1.

It took a remarkable development in forcing technique to settle the consistency
of a universal linear ordering in ℵ1 < 2ℵ0 . In [12] Shelah introduced both his Proper
Forcing and his Oracle Forcing methods, and used them to prove the consistency of
2ℵ0 = ℵ2 with the existence a universal linearly ordered set of cardinality ℵ1. The
singularity and difficulty of this result are appreciated adequately in the light of a
much later result by Kojman and Shelah [7]: ℵ1 is the unique uncountable regular
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cardinal for which this consistency holds; for every regular κ > ℵ1 the inequality
2ℵ0 > κ implies that fewer than 2ℵ0 linearly ordered sets, each of cardinality κ, do
not suffice to order-embed all linearly ordered sets of cardinality κ. (For a recent
survey of applications of the combinatorial method introduced in this proof see [6].)

1.2. Metric isomorphisms and universality. Let us now turn to metric sim-
ilarity and embeddability. Kojman and Shelah have introduced the notions of
almost-isometry and almost-isometric embedding between metric spaces and were
able to obtain with respect to these relations several of the results described above
in the setting of linearly ordered sets. Up to almost-isometry there is a unique
countable dense subset of R, which is the unique ultrahomogeneous and universal
member in the class of linear countable metric spaces for almost-isometric embed-
dings. More importantly, up to almost-isometry there is a unique countable dense
subset of Urysohn’s universal separable metric space U that is the unique almost-
isometry ultrahomogeneous and universal member in the class of countable metric
spaces. In fact, the Urysohn space is characterized as the completion of such a
countable space. In Cohen or Solovay extensions both almost-isometric uniqueness
of κ-dense subsets — of R as well as of U — and the existence of an almost-isometry
universal metric space of size κ fail for all κ with ℵ0 < κ < 2ℵ0 . Furthermore, if
κ > ℵ1 is a regular cardinal and 2ℵ0 > κ, then fewer than 2ℵ0 metric spaces (not
necessarily separable) of cardinality κ do not suffice to almost isometrically embed
all metric spaces of cardinality κ. This result leaves ℵ1 as the only regular cardinal
at which the existence of an almost-isometry universal space below the continuum
may be consistent. This consistency is not known.

In the class of separable metric spaces also positive results were proved in [8].
It is consistent that fewer than continuum separable metric spaces of size κ almost
isometrically embed all separable metric spaces of size κ, for regular κ ∈ (ℵ0, 2ℵ0).
Thus, for κ = ℵ2 < 2ℵ0 , it may require only a small collection of separable metric
spaces on ℵ2 to almost-isometrically embed all others, but it always takes a larger
number of general metric spaces on ℵ2 for the similar task. For κ = ℵ1 this result
approximated the consistency of a universal separable metric space in ℵ1 < 2ℵ0 ,
but left it open.

Finally, it was shown in [8] that the almost-isometry analog of Baumgartner’s
result was simply false: in every “reasonable” metric space (see Section 2 below;
we only care here that R and U are “reasonable”) there are many pairwise almost-
isometry incomparable ℵ1-dense subsets. This seemed at the time to block the
approach to universality via Baumgartner type uniqueness.

Yet, a metric Baumgartner theorem is exactly what we prove here (for R, U
and every separable Banach space) among whose consequences is the consistency
of an almost-isometry universal separable metric space of cardinality ℵ1 < 2ℵ0 .
We use Shelah’s Oracle Forcing method from [12] (also see [14, Chapter IV]) to
prove Baumgartner’s metric analog with an additional, topological condition: any
two subsets of U or any separable Banach space that are nowhere meager, i.e.,
non-meager in any open subset, and of size ℵ1 are almost isometric to each other
(Theorem 5.1).

It is worth pointing out that almost isometries between dense subsets of a com-
plete metric space extend to the whole space. Thus, we obtain the consistency of a
statement saying that the spaces under consideration are very homogeneous.
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2. Notation and preliminaries

Say that two metric spaces (X, dX) and (Y, dY ) are almost isometric if for every
real constant K > 1 there is a homeomorphism f : X → Y that satisfies

dX(x1, x2)/K < dY (f(x1), f(x2)) < KdX(x1, x2).

That is, for every K > 1 there exists a K-bi-Lipschitz homeomorphism between
X and Y .

We quote from [8]:

Theorem 2.1. Suppose X is a separable metric space and there exists a constant
K > 1 so that for every open subset U ⊆ X there is a K-bi-Lipschitz embedding
of a non-empty open interval from the standard Cantor set into U . Then there are
2ℵ0 pairwise bi-Lipschitz incomparable ℵ1-dense subsets of X.

Let X be a perfect and complete metric space. Let (?)X be the following state-
ment about X:

(?)X There exists a nowhere meager subset of X of cardinality ℵ1 and any two
nowhere meager subsets of X of size ℵ1 are almost isometric to each other.

Fact 2.2. If (?)X holds for any separable metric space that contains an uncountable
nowhere dense set, then

2ℵ0 = 2ℵ1 .

In particular, this equality follows from (?)R.

Proof. Let Z be an uncountable nowhere dense subset of X. We may assume that
Z is of size ℵ1. By (?)X , there is a nowhere meager subset Y of X of cardinality ℵ1.
After subtracting Z from Y we may assume that Y and Z are disjoint. For every
W ⊆ Z let YW = Y ∪W . This gives a collection of 2ℵ1 nowhere meager subsets of
X, each of cardinality ℵ1.

By (?)X , for each W ⊆ Z we may fix fW : Y → YW , a bi-Lipschitz homeomor-
phism. Each fW extends to an autohomeomorphism fW of the completion X of X.
However, being separable, X has only 2ℵ0 automorphisms. Hence 2ℵ1 = 2ℵ0 . �

We shall prove below the consistency of 2ℵ0 = ℵ2 together with (?)X for every
metric space X that is isometric to some separable Banach space or to Urysohn’s
universal separable space U, and discuss some of the consequences of this consis-
tency in universality theory.

A metric space X is almost-isometry universal for a class of metric spaces if
for every space Y in the class and every K > 1 there exists a K-bi-Lipschitz
embedding of Y into X, and X is almost-isometry ultrahomogeneous if for every
K > 1, every finite K-bi-Lipschitz map from X to X extends to a K-bi-Lipschitz
autohomeomorphism of X. A subspace Y ⊆ X is conditionally almost-isometry
ultrahomogeneous if for every K > 1 every finite K-bi-Lipschitz map from Y to Y
which extends to a K-bi-Lipschitz autohomeomorphism of X extends to a K-bi-
Lipschitz autohomeomorphism of Y

3. Oracle forcing

We quote some definitions and results about Shelah’s oracle forcing from Shelah’s
[12]. Some readers may prefer the more detailed presentation of oracle forcing in
chapter IV of [14].

Definition 3.1. A sequence S = (Sα)α<ω of countable transitive models of ZFC
except the power set axiom is called an ℵ1-oracle if for all A ⊆ ω1, the set {α <
ω1 : A ∩ α ∈ Sα} is stationary in ω1.
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Note that if ♦ℵ1 holds, then there is an ℵ1-oracle.

Definition 3.2. Let S be an ℵ1-oracle. A forcing notion P satisfies the S-chain
condition, if for all P′ ⊆ P of size ≤ ℵ1 there is P′′ ⊆ P also of size ≤ ℵ1, a 1-1
function f : P′′ → ω1 and a set A ⊆ ω1 such that P′ ⊆ P′′ and for all limit ordinals
α < ω1, if A∩α ∈ Sα, S ∈ Sα∩P(α) and f−1[S] is predense in f−1[α], then f−1[S]
is predense in P.

The following Lemma says that forcing notions which satisfy an oracle chain
condition can be iterated.

Lemma 3.3 (Shelah [12]). Let S be an ℵ1-oracle.
(a) Suppose that P is a forcing notion satisfying the S-chain condition. Then

there is a P-name Ṫ for an ℵ1-oracle such that for every P-name Q̇ for a forcing
notion the following holds: If


P “ Q̇ satisfies the Ṫ-chain condition”,

then P ∗ Q̇ satisfies the S-chain condition.
(b) If for some ordinal δ, (Pα)α<δ is a continuous increasing chain of forcing

notions satisfying the S-chain condition, then the direct limit
⋃

α<δ Pα satisfies the
S-chain condition.

The main property of the oracle chain condition which we require is that forcing
notions satisfying the oracle chain condition preserve the non-meagerness of the set
of ground model reals.

Lemma 3.4 (Shelah [12]). Assume there is an ℵ1-oracle S′. Then there is an
ℵ1-oracle S such that for every forcing notion P satisfying the S-chain condition
and every P-generic filter G over the ground model V , in V [G] the set R ∩ V is
non-meager.

4. Forcing bi-Lipschitz bijections

We wish to add sufficiently bi-Lipschitz bijections between two large subsets of
a separable Banach space by forcing. The following lemma says that we will not
run into trouble at a finite stage of the construction.

Lemma 4.1. Let B be a Banach space and K0 > 1. Suppose p is a finite partial
function from B to B that extends to a K0-bi-Lipschitz bijection f : B → B. Then
for every x0 ∈ B \dom(p) and every K1 > K0 there is a nonempty open set O ⊆ B
such that for all y ∈ O, p ∪ {(x0, y)} extends to a K1-bi-Lipschitz bijection from B
to B.

Proof. Let x0 ∈ B \ dom(p). We may assume that dom(p) is non-empty. Let
δ = min{||x0 − x|| : x ∈ dom(p)} and let y0 = f(x0). Since K0 < K1 there is c > 0
such that

K0 + c < K1 and
1

K0
− c >

1
K1

.

Let

O =
{

y ∈ B :
||y − y0||

δ
< c

}
.

For every x ∈ B and y ∈ O let

g(x) =

{
0, if ||x− x0|| > δ and
(y − y0) · (1− ||x−x0||

δ ), if ||x− x0|| ≤ δ.

It is easily checked that g : B → B is Lipschitz of constant c. Clearly, the function
f + g : B → B extends p ∪ {(x0, y)}.
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We have to check that f + g is a K1-bi-Lipschitz bijection. Let x, x′ be distinct
elements of B. Then by the choice of c,

||(f + g)(x)− (f + g)(x′)||
||x− x′||

≤ ||f(x)− f(x′)||+ ||g(x)− g(x′)||
||x− x′||

< K0 + c < K1

On the other hand,

||(f + g)(x)− (f + g)(x′)||
||x− x′||

≥ ||f(x)− f(x′)|| − ||g(x)− g(x′)||
||x− x′||

>
1

K0
− c >

1
K1

,

again by the choice of c.
To see that f + g is onto let z0 ∈ B and consider the map

h : B → B;x 7→ f−1(z0 − g(x)).

By the choice of c, 1
K0

− c > 0 and therefore K0 · c < 1. Since f−1 is Lipschitz of
constant K0 and g is Lipschitz of constant c, h is a contraction. Therefore, h has
a fixed point x. Now

(f + g)(x) = f(h(x)) + g(x) = f(f−1(z0 − g(x))) + g(x) = z0.

In other words, z0 is in the range of f + g. �

Lemma 4.2. Let S be an ℵ1-oracle and K > 1. Suppose X and Y are nowhere
meager subsets of size ℵ1 of a separable Banach space B. Then there is a forcing
notion P of size ℵ1 satisfying the S-chain condition such that


P “There is a K-bi-Lipschitz bijection between X and Y ”.

Proof. We will force by finite approximations of K-bi-Lipschitz bijections from B
to B. A finite partial function p from B to B is a potential condition if for some
K ′ ∈ (1,K), p extends to a K ′-bi-Lipschitz bijection from B to B.

By recursion on α < ω1 we will construct sequences (Xα)α<ω and (Yα)α<ω1 of
subsets of X, respectively Y , a sequence (Pα)α≤ω1 of forcing notions and a sequence
(fα)α<ω1 of functions such that the following conditions are satisfied:

(1) Every Xα is a countable dense subset of X and every Yα is a countable
dense subset of Y .

(2) The sets Xα are pairwise disjoint and so are the sets Yα. Moreover, X =⋃
α<ω1

Xα and Y =
⋃

α<ω1
Yα.

(3) For sequences (A0
γ)γ<δ and (A1

γ)γ<δ of subsets of B let P((A0
γ)γ<δ, (A1

γ)γ<δ)
be the set of finite partial functions p from

⋃
γ<δ A0

γ to
⋃

γ<δ A1
γ that are

potential conditions such that for all x ∈ dom(p) and all γ < α,

x ∈ A0
γ ⇔ p(x) ∈ A1

γ .

P((A0
γ)γ<δ, (A1

γ)γ<δ) is ordered by reverse inclusion.
Then Pα = P((Xγ)γ<α, (Yγ)γ<α).

(4) For every α < ω1 with α > 0, fα is a bijection from Pα onto ω · α. If
α < β < ω1, then fβ is an extension of fα.

(5) For all α < ω1, if for some β ≤ α and some S ∈ Sβ , f−1
β [S] is predense in

Pβ , then every condition in Pα+1 is compatible (in Pα+1) with an element
of f−1

β [S], i.e., f−1
β [S] is predense in Pα+1.

Suppose the recursion can be carried out. We claim that P = Pω1 works for the
lemma.

Let G be P-generic over the ground model. Then clearly, b =
⋃

G is a K-bi-
Lipschitz mapping from a subset of X to a subset of Y . We have to check that
dom(b) = X and ran(b) = Y . We only give the argument for dom(b) = X. The
proof of ran(Y ) = Y is symmetric.
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Let x be a point in X and let p be a condition in P. Suppose that x 6∈ dom(p).
Let α < ω1 be such that x ∈ Xα. By Lemma 4.1, there is an open set O ⊆ R such
that for all y ∈ O, p ∪ {(x, y)} is a potential condition.

Since Yα is dense in Y and Y is dense in B, there is y ∈ O∩Yα. Now p∪{(x, y)} ∈
P extends p and is again a condition in P. It follows that the set of conditions that
have x in their domain is dense in P. So by genericity, x ∈ dom(b).

We now show that f =
⋃

α<ω1
fα witnesses the S-chain condition of P.

Let α be a limit ordinal below ω1. Then for some β < ω1, α = ω · β and
hence, by (4), f−1[α] = Pβ . Suppose that for some S ∈ Sα, f−1[S] is predense
in f−1[α] = Pβ . Then, by (5), f−1[S] is predense in Pγ+1 for every γ < ω1 with
γ ≥ β. Hence f−1[S] is predense in P.

Let us turn to the recursive construction. For Z ∈ {X, Y } let ≺Z be a wellorder-
ing on Z of order type ω1. Let X0 and Y0 be countable dense subsets of X,
respectively Y . Suppose for some α < ω1 we have constructed (Xγ)γ<α, (Yγ)γ<α

and fα.
By recursion on k < ω we will define sequences (xk)k<ω and (yk)k<ω and then

put Xα = {xk : k < ω} and Yα = {yk : k < ω}. Extending fα to fα+1 is straight
forward, so we will not mention it anymore.

Fix an enumeration (On)n∈ω of all nonempty members of some countable basis
for the topology on B. To make sure that Xα and Yα are dense, for all k > 0 we
will choose xk ∈ X ∩Ok and yk ∈ Y ∩Ok.

Suppose α is an even ordinal. Then let x0 be the ≺X -minimal element of X \⋃
γ<α Xγ . If α is odd, let y0 be the ≺Y -minimal element of Y \

⋃
γ<α Yγ . This

guarantees that in the end we have X =
⋃

γ<ω1
Xγ and Y =

⋃
γ<ω1

Yγ .
If α is even, then we already know x0 and choose y0 next, then x1, then y1 and

so on. If α is odd, then we already know y0 and choose x0 next, then y1, then x1

and so on.
To make sure that (5) is satisfied for α, we will choose (xk)k<ω and (yk)k<ω so

that for even α it holds that
(even) for all k < ω, (5) is true for P((Xγ)γ<α

_{xl : l < k}, (Yγ)γ<α
_{yl : l < k})

and P((Xγ)γ<α
_{xl : l ≤ k}, (Yγ)γ<α

_{yl : l < k}) instead of Pα+1

and so that for odd α it holds that
(odd) for all k < ω, (5) is true for P((Xγ)γ<α

_{xl : l < k}, (Yγ)γ<α
_{yl : l < k})

and P((Xγ)γ<α
_{xl : l < k}, (Yγ)γ<α

_{yl : l ≤ k}) instead of Pα+1.
We concentrate on one case, namely that α is odd and we have already defined

(xl)l<k and (yl)l<k for some k > 0, and we are now looking for yk. The other three
cases are symmetric.

In order to satisfy (odd), yk has to meet countably many constraints. Namely,
whenever β ≤ α is a limit ordinal, S ∈ Sβ , f−1

β [S] is predense in Pβ and p ∈
P((Xγ)γ<α

_{xl : l < k}, (Yγ)γ<α
_{yl : l ≤ k}) uses yk, then p is compatible

with some element of f−1
β [S]. We will show that for each constraint, the set of

y ∈ Y satisfying it is open and dense. Since Y is nowhere meager, there is y ∈
Ok−1 ∩ Y \ (

⋃
γ<α Yγ ∪ {yl : l < k}) satisfying all these constraints. Putting yk = y

ensures (odd).
We finish the proof of the lemma by showing that the set of y meeting a single

constraint is open and dense.
Let p ∈ P((Xγ)γ<α

_{xl : l < k}, (Yγ)γ<α
_{yl : l < k}) and β ≤ α. Suppose

that x ∈ {xl : l < k} is not in dom(p). Suppose further that S ∈ Sβ is such that
f−1

β [S] is predense in Pβ . Finally, let O be a non-empty open subset of B. We show
that there is a non-empty open set U ⊆ O such that for all y ∈ U , if

p ∪ {(x, y)} ∈ P((Xγ)γ<α
_{xl : l < k}, (Yγ)γ<α

_({yl : l < k} ∪ {y})),
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then in that partial order, p ∪ {(x, y)} is compatible with some element of f−1
β [S].

If there is no y ∈ O such that p ∪ {(x, y)} is a potential condition, then we
can choose U = O. Now suppose that for some y ∈ O, p ∪ {(x, y)} is a potential
condition. By Lemma 4.1, there is c > 0 such that for all y′ ∈ R with |y − y′| < c,
y′ ∈ O and p ∪ {(x, y′)} is a potential condition.

By the density of X0 and Y0 and by Lemma 4.1, there are a ∈ X0 and b ∈ Y0

such that ||a− x|| < c
2K and p ∪ {(a, b), (x, y)} is a potential condition. Now

p ∪ {(a, b)} ∈ P((Xγ)γ<α
_{xl : l < k}, (Yγ)γ<α

_({yl : l < k}))

and for all y′ such that p ∪ {(a, b), (x, y′)} is a potential condition, ||y′ − b|| < c
2

and by ||y − b|| < c
2 , ||y′ − y|| < c. In particular, whenever p ∪ {(a, b), (x, y′)} is

a potential condition, then y′ ∈ O. This argument shows that by passing to a
stronger condition if necessary, we may assume that all y′ such that p∪ {(x, y′)} is
a potential condition are elements of O.

By (5), p is compatible with some condition q ∈ f−1
β [S]. In particular, p∪ q is a

potential condition. By Lemma 4.1, there is an open set U such that for all y′ ∈ U ,
p ∪ q ∪ {(x, y′)} is still a potential condition. By our assumption on p, U ⊆ O. �

Lemma 4.2 remains true if the separable Banach space B is replaced by the
Urysohn space U.

Lemma 4.3. Let S be an ℵ1-oracle and K > 1. Suppose X and Y are nowhere
meager subsets of size ℵ1 of the Urysohn space U. Then there is a forcing notion
P of size ℵ1 satisfying the S-chain condition such that


P “There is an K-bi-Lipschitz bijection between X and Y ”.

Proof. By Claim 16 in [8], U is almost-isometry ultrahomogeneous. This implies
the analog of Lemma 4.1 for the Urysohn space easily. Now the proof of Lemma
4.3 is the same as the proof of Lemma 4.2 �

Lemma 4.4. If (?)U holds, then every nowhere meager subset A ⊆ U of size ℵ1 is
almost-isometry ultrahomogeneous.

If X is a separable Banach space and (?)X holds, then every nowhere meager sub-
space A ⊆ X of cardinality ℵ1 is conditionally almost-isometry ultrahomogeneous,
namely, for every K > 1, every finite K-bi-Lipschitz map from A to A extends to a
K-bi-Lipschitz autohomeomorphism of A — provided it extends to a K-bi-Lipschitz
autohomeomorphism of X.

Proof. Since almost-isometry ultrahomogeneity is preserved under almost-isometry,
it suffices to prove that there exists at least one almost-isometry ultrahomogeneous
nowhere meager subset of U whose cardinality is ℵ1. Since U is almost-isometry
ultrahomogeneous, any subspace A ⊆ U can be enlarged to an almost-isometry
ultrahomogeneous subspace of the same cardinality by a standard closure under bi-
Lipschitz autohomeomorphisms argument (using only rational K > 1 as constants).

The proof of the second clause in the Lemma is similar. �

5. The results

Theorem 5.1. If ZFC is consistent, then so is ZFC + 2ℵ0 = ℵ2 + “for every metric
space X, if X is isometric to the Urysohn space or to some separable Banach space,
then (?)X holds”, where (?)X is the statement

X has a nowhere meager subset of size ℵ1 and any two nowhere
meager subsets of X of size ℵ1 are almost isometric to each other.
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Proof. We start from a model of ♦ℵ1 + 2ℵ1 = ℵ2. In this model there is an ℵ1-oracle
S as in Lemma 3.4. We then perform a finite support iteration ((Pα)α≤ω2 , (Q̇α)α<ω2)
such that for each α < ω2,

(1) Pα+1 = Pα ∗ Q̇α and 
Pα |Q̇α| = ℵ1. (This guarantees that each Pβ is of
size ℵ1.)

(2) For some Pα-name Ṫ for an ℵ1-oracle as in Lemma 3.3 a),


Pα “Q̇α satisfies the Ṫ-chain condition”,

so that Pα+1 satisfies the S-chain condition. (This guarantees that all Pβ

satisfy the S-chain condition.)
The forcing notion Pω2 then satisfies the S-chain condition by Lemma 3.3 b) and

hence, by Lemma 3.4, in every Pω2-generic extension the ground model reals will
form a non-meager, in fact a nowhere meager, subset of R of size ℵ1.

By a theorem of Kuratowski [9], for any two perfect Polish spaces X and Y there
are meager Borel sets A ⊆ X and B ⊆ Y so that X\A and Y \B are homeomorphic.
Thus, if R has a a nowhere meager set of size ℵ1 then every perfect Polish space
has a nowhere meager set of size ℵ1.

If in any Pω2-generic extension of the ground model, if A and B are nowhere
meager subsets of size ℵ1 of either the Urysohn space or of a given separable Banach
space X, then there is α < ω2 such that A and B are already elements of the
corresponding Pα-generic extension and they will be nowhere meager also in that
intermediate model. Note that if A and B are nowhere meager subsets of a Banach
space X, then they are dense in X and therefore X as a metric space can be
reconstructed from either A or B.

By using some suitable book-keeping we can make sure that for every K > 1 and
A,B as above, there is some β < ω2 with α ≤ β such that the forcing notion with
the name Q̇β adds an K-bi-Lipschitz bijection between A and B. The existence
of such a forcing notion is guaranteed by Lemma 4.2 and by Lemma 4.3. For the
book-keeping we use the facts that

(1) at every initial stage of the iteration we have 2ℵ1 = ℵ2 and
(2) there are only (2ℵ0)ℵ1 = 2ℵ1 separable metric spaces of size ℵ1 (up to

isometry).
It follows that in the Pω2-generic extension, any two sets A and B as above are

almost isometric to each other. �

Remark 5.2. The case X = R in Theorem 5.1 follows also from Burke’s Theorem
1.7 in [5]: it is consistent that there is a nowhere meager subset of R of size ℵ1 and
any two such sets are order isomorphic via a restriction to R of an entire function
with a first derivative arbitrarily close to 1.

Theorem 5.3. If ZFC is consistent, then so is ZFC + 2ℵ0 = ℵ2 + (a) +(b) + (c),
where:

(a) There is an almost-isometry ultrahomogeneous and almost-isometry univer-
sal element in the class of all separable metric spaces of size ℵ1.

(b) For every separable Banach space B there is a conditionally almost-isometry
ultrahomogeneous and almost-isometry universal element in the class of
subspaces of B of size ℵ1.

(c) For every finite-dimensional Banach space B, the property of being almost-
isometry universal in the class of subspaces of B of cardinality ℵ1 deter-
mines a space up to almost-isometry.

Remark 5.4. Condition (c) easily fails for U. Suppose X ⊆ U is universal and
dense in U, and let X ∪ {x} for a new point x be so that x has distance ≥ 1 to any
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point in X. So both X and X ∪ {x} are separable and almost-isometry universal,
but they are not almost isometric to each other (and X∪{x} is not almost-isometry
ultrahomogeneous). Similar examples exists in every separable Banach space which
is isomorphic to one of its hyperplanes, e.g. the infinite dimensional Hilbert space.

Proof. We work in a model of set theory as in Theorem 5.1. To prove (a) fix a
nowhere meager subset Y ⊆ U of cardinality ℵ1. By Lemma 4.4, Y is almost-
isometry ultrahomogeneous. To prove that Y is almost-isometry universal suppose
that X is a separable metric space of size ℵ1. Since X is isometric to a subspace of
U, we assume that X is a subspace of U. Now X ∪ Y is nowhere meager in U and
of size ℵ1, hence Y and X ∪ Y are almost isometric. This implies that X is almost
isometrically embedded into Y .

The proof of (b) is similar to that of (a).
To prove (c) suppose X is a finite-dimensional Banach space and that A ⊆ X is of

size ℵ1 and is almost-isometry universal in the class of subspaces of X of cardinality
ℵ1. We claim that A is nowhere meager in X; the almost-isometry uniqueness of
A follows from this claim and (?)X .

Fix some set B ⊆ X which is nowhere meager in X and of cardinality ℵ1 and
fix, by the almost-isometry universality of A, some K-bi-Lipschitz embedding f :
B → A for some K > 1. Denote by f̂ the continuous extension of f to X. Also f̂
is bi-Lipschitz.

Since X is homeomorphic to Rn for some n, Brouwer’s preservation of domain
theorem applies to X, and therefore f̂ is open; since f̂ is bi-Lipschitz, f̂ is also closed.
Therefore ran f̂ = Rn by connectedness of X, and f̂ is thus an autohomeomorphism
of X. It follows that f̂ [B] is a nowhere meager subset of X. Since f̂ [B] ⊆ A, A is
nowhere meager in X. �

6. Open problems

Let us state the central open problem first:

Problem 6.1. Is it consistent to have an almost-isometry universal metric space
in cardinality ℵ1 < 2ℵ0?

We remark, again, that with any uncountable regular κ > ℵ1 substituted for ℵ1

in this problem, the answer is negative. The analogous problem for linearly ordered
sets [12] and graphs and other relational structures [13, 10] have positive answers.

Problem 6.2. Is it consistent that there is a nowhere meager subset of U of car-
dinality ℵ2 and that any two nowhere meager subsets of U of cardinality ℵ2 are
almost isometric?

A positive solution will solve positively also the next problem:

Problem 6.3. Is it consistent that 2ℵ0 > ℵ2 and that there is an almost-isometry
universal separable metric space of size ℵ2?

Finally:

Problem 6.4. Is (?)U consistent with 2ℵ0 > ℵ2?
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