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A model describing the evolving shape of a growing pile is considered, and is shown to be
equivalent to an evolutionary quasi-variational inequality. If the support surface has no steep
slopes, the inequality becomes a variational one. For this case existence and uniqueness of the
solution are proved.

1 Introduction

Spatially extended open dissipative systems have recently attracted much interest among
physicists. These systems are capable of demonstrating almost instantaneous long-range
interactions and, under the action of external forces, often tend to organize themselves into
a stable or statistically stable critical state [1]. Modifications of a cellular automaton model
of sandpiles [2] have often been used in simulations of these systems (see, for example, [3-6]).

More realistic continuum mechanics models have also been proposed for sandpiles [7-9],
river nets [9] and type-II superconductors [10]. The continuous models contain very similar
variational or quasi-variational inequalities, allowing one to describe the behaviour typical
of extended dissipative systems. One of these models, the continuous deterministic model
of sandpile evolution [7], is considered in this paper. The problem under consideration may
be formulated as follows:

Let a cohesionless ideal granular material be poured out of a distributed source onto a
given rough rigid surface. We find the shape of a growing pile.

The model [7] has been already discussed in [9], and so only a brief description is given
in the first part of this paper. In the second part, we prove that this model is equivalent to
an evolutionary quasi-variational inequality (the scheme of this proof has been previously
outlined in [7, 9]). The last part of our work concerns a special case where the inequality
becomes a variational one. Its analytical solutions, describing the growth of the real
sandpiles on flat open platforms, have been found in [9]. A method for the numerical
solution was proposed in [8]. Here we prove the existence and uniqueness of the solution.

2 Model of pile growth

The flow of granular material down the slope of a growing pile is usually confined to a thin
boundary layer which is distinctly separated from the motionless bulk. Assuming the bulk
density of the material in the pile to be constant, we can write the mass conservation law
as
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Here h(x, 1) is' the free surface of a pile, w(x,?) is the intensity of a distributed source,
jx, 1) is the \, horizontal projection of the material flux in the surface layer,
xXe c R, andl Q is a bounded domain with Lipschitz-continuous boundary I

We assume \%}%\at the surface flow is directed down the path of steepest descent,

f= —mVh,

where
m(x,1) =0 M

is an unknown scalar function. We would like to stress that m is not supposed to be a local
function or functional of A but is introduced as an auxiliary unknown. This is the key
feature of our model. The conservation law now assumes the form

%_/tz_ V- (mVh) = w. 2)

At ¢t = 0 the free surface coincides with the support surface,

hl,_g = hy(x). 3)
The free surface is never below the support surface,

h(x, £ = hy(x), )

and wherever the free surface is above the support, it has an incline not greater than the
angle of repose of the granular material,

h(x, £) > hy(x) = |Vh(x, )| < v, )

where 7 is the tangent of the angle of repose. No pouring occurs over the parts of the pile
surface inclined at less than the angle of repose:

|VA(x, )| < y=>m(x,1) = 0. (6)

Let the granular material be allowed to leave the system freely through part I'; of the
domain boundary while the other part, I, =I\I}, be an impermeable wall. The
corresponding boundary conditions are -

oh

By =hly, @, m=| =0 (b). ™
1 ! on|p,

The model of pile growth (1)-(7) contains two unknowns, the free surface & and an
auxiliary function m. As is shown below, the latter function is a Lagrange multiplier which
can be excluded in the transition to an equivalent variational formulation of this model.

3 The quasi-variational inequality

We need functional spaces H = L®(Q), ¥, = W"%(Q) with 2 < g < oo, and also spaces of
functions of time with values in the appropriate Banach spaces, # = L*(0, T; H) and
¥, = L0, T; V,). We shall write simply ¥ and 7" instead of ¥, and 7,. We denote by X" the
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dual to the space X, thg natural pairing of elements of ¥, and ¥V, H and H" by (. ,.), and
of elements of ¥, and 7", # and #” by <.,.>. The notation |- ||, means the norms in the
space X and we shall Wfl.ite |-l if X = L% We define also Q0 = 2 x (0, T).

Let h,e V. For every \’function e we define a mapping B,: 7" — H# by

B B = VY- M(9),

where
) if  Plx, 1) > hy(x),
M), 1) = { max (/% VRGO i $Cx, 1) < hy(x).
Let us define a partial ordering on the spaces of functions, ¢ > v if this inequality holds

almost everywhere (a.e.), and denote by % the cone of non-negative elements. We also
define the family of closed convex sets

H(P) = eV | B,4p) <0, ¥, =hlr, forae. 1.

We assume that we 7 and w > 0, i.e. {w,¢)> = 0 for any function ¢e7”, ¢ = 0. Let us
consider the quasi-variational inequality

Find a function / such that

k' =oh/dte ", for some 2 < ¢ < o0, (8)
he A (h), ©)

W —w,p—h) =0, VoeA(h), (10)
hl,eo = Ny (1)

Since he?” and h'e?”;,, we have he C([0,T 1; L*(R)) which makes sense of (11). The

conditions (9)—(10) are equivalent to the following:

hearg min J(¢), (12)
B,lq(;,;)lso

where the linear functional J,e " is defined by J(@) = (h'—w, ¢ and A = 7" is the set
of functions satisfying (7a). Below we use this formal representation of (8)-(11) as an
optimization problem on ¥~ to prove that this quasi-variational inequality is equivalent to
the model of pile growth and the auxiliary variable m is a Lagrange multiplier, related to
the constraint B,(¢) < 0.

The usage of the Lagrange multiplier technique is justified if a constraint qualification
hypothesis of some kind is fulfilled. The Slater condition ([11], ch. 3, §5)

Jrpe A: — B, () €int ¥ (13)

is the simplest and often the most convenient of such conditions. It is to satisfy the Slater
condition we have had to define the admissible sets 2 (/) as subsets of non-refiexive space
¥ Then B,: A— # = L*(Q), and it is only in L* of all L” spaces the cone of non-negative
elements ¢ has a non-empty interior. The Lagrange multiplier belongs then to the dual
space, #°. Therefore, to show the equivalence of two problems, we need first to derive a
weak formulation for the model (1)-(7), valid for {h, m}e ¥ x H#".
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The partial ordering on # induces a partial ordering on 3, hence (1) may be
understood as {m, $> = 0 for any ¢ > 0. The weak form of (2) with the boundary condition
(7b) may be .Jwritten as

&: W =w, >+ {m, Vh-Vifry =0 (14)

for all yrev” "'B}';xch that |, = 0. Equations (3)-(5) and (7a) must hold almost everywhere.
To make sense also to (6), let us define

0" ={(x,NeQlIVi(x, )l <y ael}.
For mes#”’, (6) can now be formulated as follows:

Voed, supppc Q ={m, ¢y =0. (15)

Theorem 1 Suppose hye V, we ¥, w = 0, and there exists a function yr,€ V such that

Yolr, = Mol 1V <y

Then the function h is a solution of the quasi-variational inequality (8)—(11) if and only if there
exists me ' such that the pair {h, m} is a weak solution to problem (1)—(7).

Proof Let us fix / in the functional J, and mapping B, of optimization problem (12). The
continuous functional J, is linear, B, is convex in the sense of the partial ordering on 4,
and the set 4 is a closed convex subset of #". The Slater condition (13) holds for any /1 due
to the assumption of this theorem. If the functional J, is bounded from below in % "(/) (we
will check this later), the necessary and sufficient condition of optimality for (12) is the
existence of saddle point of Lagrangian L(¢,p) = J,(¢)+<p,B,($)> (see [11], ch. 3,
th. 5.1). The exact formulation is: e 4 is a point of minimum if and only if there exists
me ', m = 0 such that
L($.p) < L($,m) < L(gp, m),

for all pe A4, pe#’, p = 0. The condition of complementary slackness,

(m, B,(¢)> =0,

which means that the Langrange multiplier is zero wherever the constraint is not active, is
thereby satisfied. '

The solution of quasi-variational inequality, determining J, and B, in (12), is a point of
minimum, and so must satisfy the optimality condition. Hence, substituting ¢~ =h, we
obtain a condition characterizing solutions of quasi-variational inequality.

The function 4 is a solution of quasi-variational inequality (8)-(11) if and only if it
satisfies the conditions (8) and (11) and there exists a functional me #”’, m = 0, such that
the pair {/h,m} is a saddle point of the Lagrangian, i.e.

S +<p, By(1)) < J(h)+<m, B (1)) < J(§) + <{m, By($)) (16)
for all g€ A4, p > 0. The condition of complementary slackness now reads
{m, B,(h)) = 0. a7

Let us assume that a solution 4 of the quasi-variational inequality (8)-(11) exists. Then
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\

the functional J, is boupded from below in 2#°(h), and so there exists a saddle point
{hymye¥ x A’ Let us giﬁow that the pair {#, m} is a weak solution to the problem (1)—(7).

By (16), the functionaI\éﬁ’ —w, @ +3(m, |Ve|* — M(h)) has a minimum in 4 at the point
¢ = h. Taking the variation of this functional, we obtain (14), the weak form of (2) with
the boundary condition (7). Conditions (1) and (3) hold, and condition (5) also holds a.e.

since he A (h).
Like any non-negative functional from 7, the functional m can be represented [12] as

G, 5 = f b,

where x is a non-negative addition function defined on the Lebesgue-measurable subsets of
Q and such that 4(Q) < co and

V0, <@, mesQ,=0=pu(Q)=0.
It follows from the complementary slackness condition (17) and the inequality B, (/) <0

that
f B,(hydr =0
o

But B,(h) < 0 a.e.in O, hence #(Q") = 0 and the weak version (15) of condition (6) is true.
To prove that {#, m} is a weak solution to (1)~(7) we need now only check that i = h,.
Let us denote a* = max(a, 0) and define

b+ (hy—h)t for 0<1<1,
R otherwise.
Since ¢pe A (h) and {w,¢—h) > 0, we obtain
0 —w,p—h)y < —3|(hy—h(t, )|, Vi,e[0, TT,

which proves inequality (4).

Now let the pair {h, m}e ¥ x #’ be a weak solution of pile growth model, i.e. '€ #", and
h, m satisfy (1), (3)-(5), (14), (15) and (7a). If I, + @, the set 2 (/) is bounded in 7" and
so the continuous functional J, is bounded on this set. Otherwise, (14) yields that J, takes

the same values at the functions ¢ and ¢ — (mes 2)™ [, ¢, and so it is sufficient to show that
this functional is bounded on the set

A (h) = {95 e A (h)

J. =0 ae. in (0, T)}-

For ¢ e, the condition [,¢ =0 a.e. in (0, T) implies |||, < C|V¢|,, where C is a
constant independent of ¢. For ¢ e 4 (h)

IVo(x, 0 < M(h) (x, 1) < max (v%, [ ll7)

and J, is bounded, since # (/) is a bounded subset of 7.

It remains to show that {/, s} is a saddle point of the Lagrangian. By (5), [VA| <y a.e.
where h > h,. On the other hand, for almost all #, the function ¢,(x) = h(x, ) —hy(x)
is differentiable a.e. with respect to x and has minima at the points of the set 2, =
{xeQ|h(x, ) = hy(x)}. Therefore, with i(x, ) = hy(x), we have Vh(x,t) = Vhy(x) a.e. and
so |VA|* < M(h). Up to a set of measure zero, this inequality is strict only where [V/| <y,
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and so suppr,L(/z) = Q~. The condition of complementary slackness (17) follows now
from (15) and‘,“yields the first inequality in (16), since {p, B,(h)) < 0 for any p > 0.
Finally, let e 4. Using (14) with 3 = ¢ —h, we obtain

\'L{,é\(vﬁ) +<m, B($)) — S () — m, By (h)) = 5{m, V(g —R)*) = 0

which completes the proof.

Corollary Let hh be a solution of quasi-variational inequality (8)—(11) and w = 0. Then h is a
non-decreasing function of time.

Proof Let

23

b+l )T for <1<t
h otherwise.

To show that ¢ e (1) we need to check that |V¢|* < M(h) a.e. in the set Q, = {(x, ))|t, <
1< ty, (x, 1)) > h(x,t) a.e.}, where ¢ differs from 4. In this set ¢(x, £) = h(x, t,) > h(x, t)
a.e. and we have already proved that /(x, 1) = hy(x) a.e. for any z. Therefore, a.e. in Q,

IVp(x, D = |VA(x, 1)* < v* < M(h) (x, 1).

Substituting ¢ into (10) and taking into account that ¢—/ >0 and w > 0, we obtain
(h(x, 1) —h(x, 1,))" = 0, and so h(x, t,) = h(x, 1) for £, > ¢,.

4 A special case: a variational inequality

If the support surface has no steep slopes, i.e. |[V/,y| < v, the set of admissible functions 4~
is independent of the solution / and problem (8)—(11) becomes a variational inequality. We
will first consider the case of homogeneous boundary condition

/"0[1"1 =0

and prove the existence and uniqueness of a weak solution in this case. Let us define the
Banach spaces
U={peVldl, =0}, %=L"0,T;U),

and the set
H ={peU||Ve| < y}.

If pe ot is such that ¢’e’, the inequality (10) yields

Js (@ —w R+ —¢",¢—M} >0

for all s€[0, T'], and so i
S t=s

L@ =g > 8-t | (18) 2
0 t=0

For this weak formulation of variational inequality only the continuity of /4 in time is
needed.
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‘ollows now Theorem 2 Let we W', hye V, hy|r, =0, and |Vh| < y. Then there exists a unique function h

p>0. such that he n C([0, T], L¥(RQ)),

t
ﬂ hl,_y = hy,
and (18) is fulfilled for \l\vi\ll se€[0,T] and all peA" such that ¢'€U’.

Proof To prove the theorem we follow the penalty method developed for parabolic
variational inequalities ([13], ch. 3, §6). The proof, however, has to be modified, since in our
case the operator of the variational inequality is not coercive.

). Then his a

Existence Let us consider a boundary value problem for a parabolic equation,

1
het—BLh) = w, (19)
= {(x, 0l < .
2 fl) > h(x’ [) he'l’] = 05 EE' - = Os
s, a.e.in Oy 2
o = hys

where e > 0 is the penalty parameter and the bounded monotone operator f,: U— U’ is
0, we obtain defined by the following relation:

(), ) = f (VHE =) +e) Vh Vg, Ve U.

The boundary value problem has a unique solution 4 e% with A e’ [13]. Multiplying

. equation (19) by &, and integrating we obtain
; functions A~

. 1 3 12
requality. We o1+ [ oo = [ onn-+iime o)
0 0

and, since [, (B.(h), h) =0,
”/76“3,""(0,7';&(9)) < C”W”v/z* 152l + C, 21)
12, D1* < Clwllg N2 llo+ C. (22)

(C will denote different constants.) From (20) and the inequality z* < 2z* (z>—y*) +9* it
follows that

us define the

.
f f Vi ' < CBARY, 1Y +C < eClwlg 1]y +C.
0 JQ

The last estimate, inequality (22), and the inequality

2
f u' < C(J le) +Cf [Va*
Q Q Q

imply that

I7lle < C, (23)
(18) where C does not depend upon e. Due to (21) and (23), there exists a subsequence, also
denoted by A, such that as ¢—0 '
>f h in time is h,—~h in % weakly, (24)

h.—~h in L=(0, T; L*£)) =-weakly.

(25)
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For any ¢e%,

I<ALR), ¢>{§ S KAVAL =y + 62, Vi PH1
\\‘é X CAVAL —y®)" + €% IVBIEY < (Bh), B Y (Cllha+ C) | Bl

Since ||A]l, is bounded and {f.(h),h.> < Ce, this proves that f.(h)—>0 in % as e—0.
Denote £, = fi|...,. Obviously, g,(h,) also tends to zero in %’. Let us show that ie %", Set
u=(1-0)h+0¢, where 0€(0,1) and $e%. Due to the monotonicity of f,,

0 < {Bolh) = Bo(u), he—up = { Bo(h), h,—h)
+ 0 Bolh)s ho— B> — < Bo(u), b=y ~ 6K Bo(u), h—p).

All e-dependent terms in this expression tend to zero as e— 0, so ¢ Bo(u), h—¢)> < 0. Letting
60 we obtain {fy(h),h—¢> <0, Ve« which implies he A .
Furthermore, let pet”, ¢’ e¥’. Then

|[@—ms-ny ==L ons-nyriip-nrl.
Due to the monotonicity of £,
f (B 1) < f (BB p—h) = j f V-V —h) < E(ClB1L +C).

Denote ¥ = {{ye C([0, TT)| ¢ = 0}. For any function yre ¥

j W(s) ( J =, p—h) <r)) > —e(CllgIE + C)f W)

+%f () p(s) —h(s)I*— 3l (0) —/Tullzf (s).

Let ¢+ 0. Taking (24) and (25) into account we obtain

[Fvo ([ @-ms-n o)

> 3 liminf J 1/f(S)ll¢(S)—/u(S)llz—-é-Hqé(O)—/7oll2f (s)

>3 [ #6161~ 190 -
which proves that
L@ =10 > PO MO g0l e e

To show that e C([0, T]; L*(2)) we consider the problem

nity+u, = h, u,0)=hy, 3>0. 27)

Its
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Its solution, u,(1), belongs to set #". Taking ¢ = u, in inequality (26) we obtain

\

ﬁ (uy, LI,,—h)—j (w,u,—h) = 3llu,s)—h(s)]* ae.
flo 0

“Nhlla+ CY Al

)in %" as ¢—0. or b
w that he . Set 1 [e .
" Bos %Ilu,](s)—h(s)||2+5jo 1 —u,|* < —L (w,u,—h) ae.
Therefore,
By(u), h— . fs lh—u]12 < —7 Js(w, u,—h), (28)
o 0

-y <0. Letting
llut,(8) = H(SI* < —ZJ (w,u,—h) ae. 29)
0

Solutions u, of (27) are bounded in % and so (28) implies that u,—/1—0 in L*(Q) when
7—0. Then the sequence u,—h must also converge to zero weakly in %. The integral on
the right side of inequality (29) tends to zero uniformly in s when -0, and this proves the
continuity of the function /:[0, T']— L*(Q2).

Choosing in (26) the function ¢ which is equal to /, at ¢ = 0 yields

g1 +C)- s
1)~ <2 | (' =w. 6=
0
and h(s) > h, when s—0. Hence, the existence of / is proved.
Uniqueness. Let h, and h, be two solutions. Then /1 = §(; +4,) is also a weak solution of
(" the variational inequality. The solution of (27), u,, belongs to 4. Substituting ¢ = u, into
~holl J ¥ls)- the inequality (26) for h, and h, and adding these inequalities we obtain
[}
2 f (upyu,—h)—2 f (w, 1, —h) = §llu,(8) = I (DI + 2l () — ()11,
0 0
From (27) it follows that
s , 1 .
, W u,—hy =—=|u,(s)—h(S|* <0,
) G p

hence
171(5) = ha(1I* < 2(1fu,(8) = Ay (DII* + N1, () — A (P < —SJ (w,u,—h).
0

The right-hand side tends to zero when —0, and so the uniqueness is proved.

(26) :
The case we’, hol,, =0, considered in Theorem 2, includes the real experiment
situations [3], for which the analytical solutions are known [9], in particular, those with the
point sources. The theorem also shows that the solution of variational inequality can be
7 , found as the limit of solutions of nonlinear parabolic problems. This result may be
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important for the numerical solution of generalized model for pile evolution proposed in
(8], and also sheds light on the connection between our model and the anomalous diffusion
models of dig%ipative systems (see the discussion in [9]).

We will n(ﬂ{v prove the existence and uniqueness of a strong solution for we L3(Q) and

the non-homogeneous boundary condition. Let us define a closed convex set
K={eVIIVhl <y, @Ir, = hyy).
It is not difficult to show that this set is also closed in L*(Q2). We can write the variational
inequality as a Cauchy problem .
W+l (h)aw, hl,_,=h, (30)

where 0 is the subdifferential and the indicator function
0 ifgek,
o0 otherwise

[I((¢) = {

is defined on L*(Q). Since I, is a convex lower-semicontinuous function and hye K, the
problem (30) has a unique solution he C(0, T'; L*(82)) such that h(-,)eK for almost all ¢

and i’ e L¥(Q) ([14], ch. 4, th. 2. 1). The first two inclusions yield he 7. Let us show that also
he CYY(Q).

The domain @ has a Lipschitz boundary, so the following cone property [15] is satisfied:
there are », > 0 and x > 0 such that any xeQ can be made a vertex of a sector, having
radius ry, angle «, and lying wholly (except perhaps for the vertex) inside the domain Q. Let
Xo€Q, ty—t, =7>0,8 = |7(xq, 1) — h(x,, £,)] and U,, be the cone property sector with the
vertex x,. We define U, U,, as a sector with the same angle and vertex but a smaller radius
I < ro. The inequality [VA| < y yields lh(x, t,)—h(x, t,)] = 0—2y|x—x,|, and so

S = f |h(x, 1) —h(x, t,)] = 30k12 —Zyir®,
U,

On the other hand,

t, ty \1/2
SQJ- f [ (x, 1) < (f f 1) 7] < Crr2,
Ui, U Jt,

hence, Cr7'/% > 18kr® —2yir®, Taking r = ro(7/ ), we obtain & < Cr', Since the function
h is Lipschitz continuous in x, he CY(Q). We have thus proved the following theorem:
Theorem 3 Ler we L¥((Q), hyeV, and [Vhy| < vy. Then the variational inequality
h(-,0eK: (W—w,¢—h) >0, Véek, a.e. in (0, T),
/7|t=0 = /70

has a unique solution he V" 0 CYQ) such that h' e L¥(Q).

5 Conclusion

We have considered a deterministic quasi-stationary model of the pile growth. In this
model, the evolution of the pile shape is governed by the surface transport of a poured
granular material, and only the direction of this transport is determined by the local
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conditions, i.e. the local topography of the free surface of a pile. The surface flux magnitude
depends upon the solution and external source in a non-local way and is determined in this:
model by a Langrange multiplier, related to a condition of equilibrium.

Such a situation ,i‘s typical of models of other extended dissipative systems (see for
example [10]), wherg the relaxation is fast and the assumption that all transport occurs at
the border of stabilit{is justified.

We showed that the model is equivalent to a quasi-variational inequality and proved the
existence and uniqueness of a solution in the special case where the inequality is variational.
The variational formulation obtained is very useful for numerical simulation [8]. The
existence of a solution in the general case is an interesting open problem.
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