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fm substrate, and couple it to the model of  an infinitely thin superconducting layer.  

Resulting 1D system of integro-differential equations is

 much simpler,   solved b(a) (b) y an accurate and fast Chebyshev spectral method.
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Model : thin sc layer +  fm substrate 
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is the substrate-induced field in the sc layer.

There is also the transport curent condition
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the sc layer is above the substrate and if it is be w  .1 los =
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 Chebyshev spectral discretization in space; 

 Method of  lines for integration in time.

( )  

  analytical treatment of singular integrals
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33Numerical solution

Advantages : 

 :

, fast convergence,

  simple and accurate matrix representation of linear operations 

  (transition from the mesh values to the interpolating expansions in 
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Example 1. A transport current problem : convergence 
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rate one. 

Here  - the number of mesh points, ( ) and ( ) - the relative 

deviations  (in the -norm) from the solution with 800.

N j

L N =

  

N ( )N j ( )N 
TABLE I. 

Convergence Rate and Computation Times 

N  ( j )  ( ) CPU time 
(seconds)

25 9.9e-3 3.8e-3 0.16
50 4.0e-3 1.3e-3 0.17

100 1.4e-3 2.9e-4 0.47
200 1.2e-4 7.5e-5 2.4
400 1.3e-5 1.7e-5 15
800 - - 112



Example 2. The sheet current density distribution for different 

CC in a growing normal field at 

=0.6; here =200 to compare 

with the analytical solutions for 

the Bean model.
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A simplified model: long permanent magnet + "active length" for voltage
Mataira et al, 2019; Ainsli

,
 "benchmark problem e et al, 2020;  P " 

HTS dynamo flux pump - contactless charging sc coils or magnets

& S, 2021.
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Ainslie et al, 2020.

Changing the substrate parameter ,  we study the impact of a fm substrate; 

all other dynamo parameters are as in 





The instanteneous voltage on the load can be divided into two parts:

 generated in the stator and estimated a
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HTS dynamo.  The DC voltage.
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is the width-averaged ,

is the effective "active length".
 generated in the closed circuit by the changing magnetic flux .
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ration. However,  is periodic if 
the transport current is constant and almost periodic in case of charging a coil. 
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If the sc layer is between the rotor and fm substrate, the voltage is increased. 
In the opposite case the fm substrate shields the sc, the

         HTS dynamo. Open circuit voltage, simulation results.

 voltage decreases.

( ) ,  the sc layer is between 

the rotor and substrate.
r

V t l e=  Top: the sc layer is between.DC voltage.
Bottom: the sc layer is outside.



HTS dynamo. Charging a coil. 

 can supplement the dynam

Ghabeli et al. 2021
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ripples but still has a correct mean-cycle value. 

    Such simulations are time consuming: charging a coil needs thousands 

of rotor rotations. A simpler method i
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problems with a given transport current .



HTS dynamo. A simplified charging model.
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Problems with a given transport current
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• Charging model that neglects current ripples



 HTS dynamo. Comparison of the two charging models.

Solid lines - numerical solution 
of the thin shell model + circuit 
eq. for the coil; black stars "*" - 
analytical solutions for the simpli-
fied model. 
The two solutions almost coincide. 
Hence, curren

 

 

t ripples (inset) can 
be ignored when modeling charging 
a coil.
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 A thin shell model of a coated conductor with a ferromagnetic

substrate is derived. It is formulated as a system of 1D integro-

differential equations, is much simpler than previ

1

ous models,

.

Conclusion

 

and solved by a very efficient spectral method.

model, we showed that employing a coated conductor 

with a fm substrate as a stator can increase the HTS dynamo-
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ccelerate contactless charging a supercon-

ducting coil or a magnet. Solving a few transport current problems 

is needed to find the main parameters of charging without time-

consuming simulations.
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