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A variational formulation and an efficient numerical method are derived for thin
film critical-state problems. We use this method to solve problems for various film
shapes with either the Bean or Kim current—voltage relation characterizing the super-
conducting material. © 1998 Academic Press
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I. INTRODUCTION

The critical-state models [1, 2] provide a macroscopic phenomenological descriptior
the magnetization of type-1l superconductors in non-stationary external magnetic fie
Since the configuration of a thin superconducting platelet or film in a perpendicular fi
is typical of experiments with superconducting materials, solution of thin film critical-stz
problems is of much interest.

Analytical solutions to such problems have been found for a model with field-indepenc
critical current (the Bean model) in thin disk [3, 4] and strip [5] geometries. These soluti
differ strongly from the well-known solutions of critical-state problems in longitudin:
geometry. Recently, Brandt has developed a numerical method for solution of the E
problems for rectangular films [6, 7]. This method was also applied to inhomogene
rectangular films [8] and generalized for problems with more general film shapes [9]
principle, Brandt’s method allows one to calculate a solution also for models with a fie
dependent critical current density, such as the Kim model [2]. The numerical soluti
obtained showed some very interesting features of thin film magnetization which have |
observed in experiments [8—12]. These are not described by the known analytical solu
since they do not appear in disk or strip geometries.
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In this work we propose a different numerical method for solving the thin film ma
netization problems. Our method is based on the variational formulation of critical-s!
problems, similar to that in [13, 14] but derived for the thin film geometry, and on t
finite element discretization. The algorithm proposed is better adjusted to problems
non-rectangularly shaped films than the method [6—9] which uses Fourier series for s
approximation. It should also be noted that in the Bean and Kim models the current—vol
relations for the superconducting material are non-smooth and multi-valued. These cc
tutive relations must be approximated by a smooth function, e.g., a power law, to
the calculations [6—9] feasible. Although such approximations are sometimes introdt
also to account for the thermally activated creep of magnetic flux, the ability of our metl
to deal with any monoton&(J) dependence without its approximation is an advantag
The efficiency and universality of this method are demonstrated by examples in whict
simulate the evolution of the magnetic field and current pattern in simply and multi
connected films of various shapes using the Bean or Kim models.

II. VARIATIONAL FORMULATION

Let an external uniform nonstationary magnetic fidld= He(t)e, be perpendicular to a
flat superconducting film. The film is assumed thin, so the model can be written in term
a two-dimensional (2d) sheet current density, t) defined at the film midplang. Here
X = {X1, X2} andJ is the current density integrated across the film thickness. It is suppo
that no external current is fed into the superconductor, so

divlJ=0in¢, J-n=0onT, 1)

where div is the 2d divergence operatbris the boundary of2, andn is a normal tol".
Conditions (1) should be satisfied also for the given initial current dedéity0) = Jo(X).

To derive a computationally convenient formulation for the film magnetization mod
we express the electric fielel via the vector and scalar potentiafsand® [15]:

E+ A =-Vo.

Let us multiply this equation by an arbitrary vector functix) satisfying (1) and integrate
it over Q. Since [, V& - J' = 0, we obtain

(E+8A,J) =0. @)

Here and throughou®, ¥) denotes the scalar produft ¢ - .

The magnetic vector potential can be represented as the sum of potential of a ¢
external current, which induces the external magnetic Figldand of the electric currentin
the superconductor induced by the variations of this figle: Ag + A;. Up to the gradient
of a scalar function, which is eliminated Byin Eq. (2),

/
’

An(x, ) = Mo/ IO, 1)

q 4 |x — X/|

wherepu is the permeability of vacuum. Brandt [16] used the zero divergence condit
(1) to introduce the stream function of the sheet current densifyisfsimply connected,
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there exists a functiog(x, t) such that at any time moment
J=—-e,x Vg

andg=0 onT'. The situation is slightly more complicated if the dom&rcontains holes
Q1,..., QN (see, e.g.,[17, Chap. 1, Corollary 3.1]). We still can introduce the stream fu
tion and assumg =0 on ', the external boundary d2. However, on the boundaries
of holes this function takes non-zero constant values, different for different holes (tt
constants are time-dependent). In this case we denofe*the domain with the holes
included, Q* = QU (U; ), and extend the stream functi@gnonto Q* continuously by
setting it constant in each hole. Similarly, a stream functionan be introduced for any
test functiond’ satisfying (1). It is easy to see thit J’=Vg - Vg', and so

i A Vg(X, t)VQ/(X/)
(A.,J)_MO/Q/Q T dx dx. ©)

Taking into account tha? x A = uoHe, and using the identitg- (b x ¢) =c- (ax b) and
Green'’s formula, we obtain

(Ae, J) = MOHe(t)/ g'(x) dx. 4
Q*

To complete the model, we now have to specify a current—voltage characteristic of
superconducting material. This highly nonlinear constitutive relation is determined by
balance of pinning and electromagnetic driving forces acting upon the quantized supet
ducting vortices [18]. For thin isotropic films in a perpendicular magnetic field, the sh
current density and electric field inside the superconductor are parallel. We can write

E = pJ, )

where an auxiliary variable, the effective resistivityx, t) > 0, characterizes the energy
losses accompanying the movement of vortices. We avoid the nogatign(J (x, t)) with

J =|J]| since, as is discussed below, the dependence on current density is multi-valu
some critical-state models. Of course, unlegsspecified, Eq. (5) relates only the direction:
of vectorsJ andE.

In the Bean model, it is assumed that the current density never exceeds some ct
value,J;, determined by pinning, and that the electric field is zetb# J.. (J. denotes the
sheet critical current density equal g, whered is the film thickness angl, is the bulk
critical current density.) Fod = J; the electric field and effective resistiviy=E/J are
not determined by this law uniquely (Fig. 1a). A similar multi-valued current—voltage
is assumed in the Kim model, where the critical current density depends on the mag!
field, J. = J.(H). As has been shown in [13], the effective resistivity in these critical-ste
models can be regarded as a Lagrange multiplier related to the current density cons
J < J.. Although the current density alone does not uniquely determine the electric fiel
such models, both these variables are determined by the complete evolutionary moc
magnetization.

The constraint on current density is relaxed if, as in [6-9], the poweBawE (J/ )"
(Fig. 1b) is employed as an approximation to Bedh(s)) multi-valued relation. Such a
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FIG. 1. Current-voltage relations.

model tends to the Bean model mdends to infinity [19]. Similar approximations have
been used by many authors. For example, a current—voltage relation that accounts f
transition from the flux creepd ~ J.) to flux flow (J > J.) regime (Fig. 1c) may be more
realistic [20, 21]. ThiE(J) law has been approximated by a function having neither ze
nor infinite slopes in some works on magnetization of bulk superconductors [22, 23].
though the numerical schemes based on these approximations perform sufficiently
their convergence and stability usually become less satisfactory the closer they app
mate multi-valued current—voltage relations. The variational formulation derived beloy
convenient for the numerical solution of thin film magnetization problems with arbitre
monotoneE (J) laws.

Let E(J) be a monotone graph, like those shown in Fig. 1. Following Bossavit [24], \
define a convex function = u(J), which may take also infinite values, as an integral

J
u(J):/ E(s)ds.
0

(this function also depends onif the film is not homogeneous). It can be shown the
uJ)—u(d)=E—J) for any J, J’ >0 if and only if E belongs to the seE(J)
(E € E(J), the graph may be multi-valued). Furthermord, iE are the current density and
electric field inside the superconductor, tHer E(J) andE || J. Therefore, for any vector
functionJ’,

uJd)—ud)>EQJ -J)>E-J -J). (6)
DenotingU (J) = |, u(J) and integrating the inequality (6) ove, we obtain
UJH)-U@) = (EJ -
(the electric fieldE is a subgradient of the functionl at a pointJ). Finally, introducing

the stream functiong andg’ for J andJ’, respectively, and making use of Egs. (2), (3), an
(4), we arrive at the variational relation (variational inequality with a non-local operatol

1
%{U(IVg’I) -U(vah}+(M&g.9' —9) +dHe | (g =9 =0, (7
Q*

whereM is the linear operator defined by the symmetric bilinear form

(Mg, ) = //V¢(X) Vi (x) dx d¥, ®)

4 |X — X|
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which is positively definite and even coercive in a properly chosen functional space [1¢
can be shown thaiu@p/2) (M@, ¢) is the energy of magnetic field induced by the currer
J=—e,x V.

The variational inequality (7) holds for all continuous test functigh) which are
differentiable almost everywhere @, constant in each hole of this domain, and zero o
the external boundary. The solutigrshould also belong to this space of functions at an
time moment and must satisfy the initial conditig¢x, 0) = go(X), whereg is the stream
function corresponding tdy.

It may be noted that variational inequalities appear as the variational formulation:
various physical and mechanical problems containing non-smooth constitutive relatior
unilateral constraints [25]. Such formulations are very convenient for both the theoret
study and the numerical solution of these problems.

The variational formulation (7) is valid for arbitrary monotone current—voltage relati
in the magnetization model and can serve as the basis for a numerical algorithm. Belov
limit our consideration to the Bean and Kim critical-state models.

Ill. THE BEAN AND KIM MODELS

Let us start with the Bean model. For this model, the functidhal) is finite if and
only if the conditionJ < J. is fulfilled in . This condition is equivalent to a gradient
constraint upon the stream functigiv,g| < J., and it is sufficient to consider in (7) only
those functiongy andg’ which satisfy this condition. On such functions the functiddal
is zero. If the domairf2 is not simply connected, the stream functions are continuous
continued by a constant inside each hole, and so their gradients in the holes are zero.
these functions themselves must be zero on the external bounggéhe boundary of2*).
Introducing the set of admissible stream functions,

[Vo| < Jin Q,
K=q9X |IVp|=0inQy,...,QnN, ¢,
¢ =0o0nTlg

we can formulate the Bean critical-state problem as follows:
Find a function gx, t) such that gs K forallt, (M3, 9 —g) + 9He | (g —g)=>0
Q*

for any d € K, and also gx, 0) = go(X). 9)

The existence of a unique solution to this problem is shown in [19].

The formulation (9) can be extended for the Kim model where the critical current den:
is field-dependent. In the case of thin film magnetization it is assuinedJ.(H,), where
H; is the normal to the film surface component of magnetic field (this componéhhak
no jump at the film mid plane= 0). Using the Biot—Savart law we can expréssin terms
of the stream function:

1 1 , ,
HZ=He+ez-—/V — | x J(X/, 1) dx
A7 Jq [X — x|

1 1 .
= He v <m) -Vg(xH)dx. (10)

_EQ
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ThusJ. = J.(H,[g]) and the set of admissible stream functions in the variational inequa
(9) depends on the unknown solution itself:

K =K(9.

This is an additional nonlinearity. Problems of this kind are called quasivariational inec
lities. Computationally, we resolve this nonlinearity by means of an additional cycle
iterations (see below).

IV. CRITICAL STATES IN THE BEAN MODEL

According to the Bean model, a stationary critical state witk J; is established in a
superconductor placed into a growing external field when the field becomes sufficie
strong. This solution is readily found analytically if the domg&ins simply connected and
the film is homogeneous.

Let 9; He be constant and, say, negative. Then the stationary form of (9) can be wri
as follows:

Find ge K such that/ (g —g) <Oforallg eK.
Q

This is equivalent to the well-known problem of completely plastic torsion of a beam [:
and also to the maximal sandpile shape problem [27]:

max .
geK /Q 9

The solution to this problem is
g(x) = Je dist(x, I'), (11)

wheredistis the distance function. The current densityx —e, x Vg is discontinuous and
abruptly changes its direction at the ridges, also calfedines [10], of domaire2 (a point

x € Q belongs to aridge if there exist at least two different point§'oxy andx,, such that
X —X1] = |X — X2| = dist(x, I"); see [26, 28]). Although the stationary solutions describe
by (11) have been found for some film shapes in works on thin film magnetization, |
simple general formula has not been presented there.

V. COMPUTATIONAL SCHEME

Numerical methods for solution of variational inequalities are well developed [29]. |
the Kim model, wher&K = K (g), the finite difference discretization of (9) in time leads
to the stationary quasivariational inequalities at each time layer:

Find g(x) such that g= K(g) and(Mg— M@, 9" — ) + (He — ﬁe)/ g-9=0
Q*

for any d € K(g)
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(here “"” means the value from the previous time layer; the opeidt® defined by (8)).
These inequalities are equivalent to the following optimization problems with an impli
constraint,

F(g) = min F(p), (12)
peK(gQ)
where
1 R R
Flp) = E(Mw,w)—(Mg,f/))Jr(He—He) ; %

is a quadratic functional. Since, as we noted above, the fdfim, @) is coercive, the
functional F is strictly convex. To solve (12) one can use an iterative scheme, e.g.,

F@™ = min F(p) (13)
peK(gh)

and discretize (13) in space using piecewise linear finite elements. Finally, we solve
resulting problems of convex programming by the augmented Lagrangian method [30,

Note that to set properly the constraints at each iteration (13), it is necessary to deter
the magnetic fieldH,[g¥] by evaluating the integral in (10) numerically. Such iterations at
not needed for the Bean model, where the critical current does not depend on the mag
field. However, also in this case, computikg is often needed to compare the simulatiot
results with results of magneto-optical measurements of the flux density.

We will now describe the main steps of the numerical algorithm in more detail.

Finite Element Approximation

We triangulate the domai2 and approximate the stream functions by continuous fun
tions, linear inside each finite element and zero at the nodes belonging to the exts
boundanfe. If © is not simply connected, the finite element mesh is extended also ins
the holes. The linear elements are convenient for approximating the gradient constr
implied by the conditiorp € K (g*), since the gradients become constant inside each fin
element. The only difficulty in approximating the functiorfalis that the scalar products
containing the operatdvl lead to the integrals

// Vi (X) - V¢J(X)dxd)(

4 |X — X'|

some of which are singular (he¢g is the piecewise linear basis function, equal to one
the mesh nodkeand zero in all other nodes). Since the gradients are constant in each fi
element, one only has to calculate

1
_ dx dx
i /Am/A x—x]

for all pairs of elementan, An. FOorm # nwe setgmn = [Am| [Anl/|X% — X°|, wherex?
is the center ofA|. The integral®), » can be approximated as

G ~ |Am|/ |Am|/ F(p) dy,
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where{r, v/} are the polar coordinates with the centexatandr = r (v) is the boundary
of Am. The last integral is regular and a simple quadrature formula can be used fo
evaluation.

Solution of the Constrained Optimization Problems

At each iteration (13), the constraipte K (g*) can be written as
Vo] = Je(X),

where J;(X) is known: it is zero in the holes d@ if the domain is multiply connected,
constant inside2 in the Bean model, or, if the Kim model is used, is determined by tt
magnetic field (10) witly = g¥. Inside each finite element the gradienid$ constant and
we approximate the constraint inside elemanby the condition

fi = 1A (IVel?la — IE(X)) <0 (14)

(the areas of finite elementgy; |, are convenient normalizing coefficients).
The functional and constraints of the discretized optimization problem depend on
vectorg of p-values at the mesh nodes and we can write this problem as

min  F(¢). 15
{fi(p)=<0} @) (15)

To solve this problem numerically, we used the augmented Lagrangian technique ([30,
see also [32, 33]), which is a combination of the penalty and duality methods. This ¢
bination has advantages over each of the two approaches: the algorithm converges
than the pure duality methods, and the convergence takes place without the necessity
infinite growth of the penalty parameter causing instability of the penalty methods. At e
iteration of this algorithm, given the vector of Lagrange multipliersve find vectory'
minimizing the augmented Lagrangian

1
Le(p.0) = Flg) + 7 zlj {[(on + 2rf1 (@) 1% = pP}.

after which the new Lagrange multipliers are found in accordance with
A= (ol +2rfi(eh) "

Herer > 0 is a constant and™ means max(, 0). For the unconstrained minimization of
L., needed at each iteration, we used the point relaxation method solving at each nc
the nonlinear equations

aLi (¢, p)/3¢" =0

by Newton’s method (herg'"! is the jth coordinate of vectap', i is the iteration number).

Note that it is not necessary to perform the optimization of the Lagrangiamvith high
accuracy at each iteration: this accuracy may be increased gradually in accordance wi
convergence of the Lagrange multipliers.
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Magnetic Field Calculation

To calculate the critical current densitii(H,) in the Kim model, it is necessary to
evaluate the integral in Eq. (10) at the center of each finite elemefithis can be done as

/Q =] Vg(x)~2/ - Vg(X)

—Z%mm)'v@’

whered Ay, is the boundary ofrth finite elementn is the unit outward normal to this
boundary. The line integrals in the last sum were calculated by means of the Simj
guadrature applied on each side/f.

’

Am

VI. NUMERICAL RESULTS

The numerical procedure described above has been realized in Matlab [34]. We
Matlab PDE Toolbox functions for visualization and domains triangulation, and Matl
Compiler to accelerate the calculations. The penalty paramefehe optimization proce-
dure was 18. The computation of a typical example took from several minutes to an hc
on IBM RS6000/370. In all examples below we assumed the virgin initial sggte Q).
We will first present the simulation results for the Bean model.

As a test for our computational scheme, the numerical solution for a thin disk v
compared with the analytical solution [3] (see Fig. 2). In this example we used a ra
fine finite element mesh to recover the current dendity|Vg|. A much cruder mesh is
usually quite sufficient to determine only the pattern of current contours, which are the s
contours of the stream functian

As was already demonstrated by Brandt [6, 7], the magnetic field penetrates a rectz
(Fig. 3) from its sides, and not from the corners as might be naively expected. The mag

Je
Hz/He

0
0
0 /R 1 0 /R 1
FIG.2. Theanalytical and numerical solutions for a thin disk: the current density (left) and normal compor
of magnetic field (right). The values dfandH, in each finite element are plotted against the radial coordinate |

the element center as distinct points. These points are close to the solid lines representing the analytical sol
The external field ide/ J. = 0.5. The finite element mesh contained 3416 nodes and 6670 elements.
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FIG.3. Magnetization of rectangular film. The current contours (left) and the level contours of magnetic f
at the film midplane (right). The external magnetic fielg/ J. (from top to bottom): 0.25, 0.50, 0.75, 1. Finite
element mesh: 1424 nodes, 2728 elements.

FIG.4. Magnetization of anirregularly shaped film. The current contours (left) and level contours of magn
field (right). The external magnetic field./J. = 0.5, 1.
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FIG.5. Magnetization of an inhomogeneous film. The current contours (left) and level contours of magn
field (right). The critical current densityd, in the left and right parts, 1% in the middle part of the film. The
external magnetic fielt,/J. = 0.5, 1, 1.5.

field is zero in the region where the sheet current density is less than critical. This zero
core shrinks with the growth of external field and the development of a steady-state cu
density solution described by the formula (11) is clearly seen in this, as well as in the |
example (Fig. 4).

The steady-state solution is more complicated if the film is not homogeneous. In
example in Fig. 5, the critical current density is 1.5 times higher in the central part of
film than in the two other parts.

If the film is multiply connected, the finite element mesh should be extended into
holes (see Fig. 6). The zero current condition inside the holes implies there the const
|Vg| = 0. Magnetization of such a film (simulated on a finer mesh) is shown in Fig. 7.

As the last example, let us consider the magnetization of a rectangular filmin ar
monotonic external field. We now assume the Kim model current—voltage relation

Jeo
=—"T"7
1+ |H.l/Ho
whereHp and J., are constants, and solve the quasivariational inequality. It can be s

from Fig. 3 and the first part of Fig. 8 (increasing field) that qualitatively the current patte
and magnetic fields are similar for the Bean and Kim models and that in the latter cas:

FIG. 6. Triangulation of a film with two holes.
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FIG.7. Magnetization of a multiply connected film. The current contours (left) and level contours of magn
field (right). The external magnetic field./J. = 0.25, 0.50, 0.75, 1.

FIG. 8. Magnetization of a film in a non-monotone external field (Kim model). The critical current densi
Je = Jey/ (1 + |Hz|/Ho), whereHo/ J,; = 0.5. The external magnetic fieldH./ J., = 0.25, 0.50, 0.25, 0.
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0.4

08 0.5 3 05 1
He/Jco

FIG.9. Hysteresisloops (Kim model). Normalized magnetic monyiiM, against external magnetic field,
Mo = |2]J, /4.

magnetic field penetrates further because the shielding current decreases as the field
A similar conclusion was made in [35], where a semi-analytical procedure, generali:
the method [3] for the Kim model, has been developed for modeling magnetization o
infinite thin strip. The magnetic moment of a film can be presented as an integral of

stream function,
1
M:_/rxJzez/g.
2 Q Q

This integral is evaluated with high accuracy even if a crude finite element mesh is u
The hysteresis loops calculated for the film from the previous example are presente
Fig. 9. These loops are far more similar to those observed in experiments than the |
which can be calculated using the Bean model: the magnetic moment of a film in a st
field becomes smaller because the critical current density decreases.
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