
The Definition by Induction Theorem

Definition Let f be a function and A ⊆ Dom(f). Then

f �A = {〈a, f(a)〉 | a ∈ A}

f �A is called the restriction of f to A.

Note that f �A = g iff Dom(g) = A and for every a ∈ A, f(a) = g(a).

Theorem “Definition by induction Theorem”.

Let V be a set, a ∈ V and F : N× V → V . Then there is a unique function

G : N → V such that G(0) = a and for every n ∈ N, G(n + 1) = F (n, G(n)).

Proof If n ∈ N denote by N<n the set {k ∈ N | k < n}. Similarly,

N≤n := {k ∈ N | k ≤ n}.
Let a, F be as in the theorem. A function g is called a good function, if

there is n ∈ N such that Dom(g) = N≤n, g(0) = a and for every k ∈ N<n,

g(k + 1) = F (k, g(k)).

Claim 1 For every n ∈ N there is a good function g such that

Dom(g) = N≤n. Proof By induction. Let g be the function {〈0, a〉}.
Then g is good and Dom(g) = N≤0.

Suppose that the induction hypothesis is true for n. Let g be a good func-

tion such that Dom(g) = N≤n. Define h = g ∪ {〈n + 1 , F (n, g(n)) 〉}. It is

left to the reader to check that h is a good function and that

Dom(h) = N≤n+1. This proves Claim 1.

Claim 2 Suppose that m, n ∈ N and m ≤ n. Suppose further that g, h

are good functions, Dom(g) = N≤m and Dom(h) = N≤n. Then h�N≤m = g.

Proof Let X be the set of all natural numbers m which have the following

property.

If g is a good function, Dom(g) = N≤m, n ≥ m and h is a good function

such that Dom(h) = N≤n, then h�N≤m = g.

We prove that X = N.
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(1) 0 ∈ X. Let g be a good function such that Dom(g) = N≤0. Then

g = {〈0, a〉}. Let n ≥ 0 and h be a good function such that Dom(h) = N≤n.

Then by the definition of goodness h(0) = a. So h�N≤0 = g. So 0 ∈ X.

(2) Suppose that m ∈ X and we prove that m + 1 ∈ X. Let g be a good

function, Dom(g) = N≤m+1, n ≥ m + 1 and h be a good function such that

Dom(h) = N≤n.

By Claim 1, there is good function g0 such that Dom(g0) = N≤m. Then

by the induction hypothesis g �N≤m = g0 and h �N≤m = g0. In particular,

g(m) = g0(m) and h(m) = g0(m). So

g(m + 1) = F (m, g(m)) = F (m, g0(m))

and

h(m + 1) = F (m, h(m)) = F (m, g0(m)).

Hence h(m + 1) = g(m + 1).

For every i ≤ m, h(i) = g0(i) = g(i). Altogether we have that for every

i ≤ m + 1 For every i ≤ m, h(i) = g0(i) = g(i). So h � N≤m+1 = g. This

implies that m + 1 ∈ X.

By the Induction Theorem, X = N. This implies Claim 2.

We now prove that there is a function G as required in the theorem. Let

G be the set of good functions and G =
⋃
G.

(i) G is a function. Suppose that 〈i, b〉, 〈i, c 〉 ∈ G. There are good

functions g and h such that 〈i, b〉 ∈ g and 〈i, c 〉 ∈ h. There are m, n ∈ N
such that Dom(g) = N≤m and Dom(h) = N≤n. Without loss of generality,

m ≤ n. By Claim 2, g = h�N≤m. So b = g(i) = h(i) = c. That is, b = c. So

G is a function.

(ii) Dom(G) = N. Let i ∈ N. By Claim 1, there is g ∈ G such that

Dom(g) = N≤i. So i ∈ Dom(g) ⊆ Dom(G). Hence N ⊆ Dom(G). It is also

trivial that Dom(G) ⊆ N. So Dom(G) = N.

(iii) G(0) = a. We know by Claim 1 that G 6= ∅. So let g ∈ G. Then

G(0) = g(0) = a.
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(iv) For every n ∈ N, G(n + 1) = F (n, G(n)). Let g ∈ G be such that

Dom(g) = N≤n+1. Then G(n + 1) = g(n + 1) = F (n, g(n)) = F (n, G(n)).

Finally we prove that there is only one function satifying the requirements

of the Theorem. Suppose that both G and H satisfy the requirements of the

theorem, and we show that G = H. We prove by induction that for every

n ∈ N, G(n) = H(n).

(i) n = 0. Then g(0) = a = H(0).

(ii) Suppose that the induction hypothesis is true for n. That is, G(n) =

H(n). Then G(n + 1) = F (n, G(n)) = F (n, H(n)) = H(n + 1).

We have shown that G = H.

3


