The Definition by Induction Theorem

Definition Let f be a function and $A \subseteq \operatorname{Dom}(f)$. Then

$$
f \upharpoonright A=\{\langle a, f(a)\rangle \mid a \in A\}
$$

$f \upharpoonright A$ is called the restriction of f to A.
Note that $f \upharpoonright A=g$ iff $\operatorname{Dom}(g)=A$ and for every $a \in A, f(a)=g(a)$.
Theorem "Definition by induction Theorem".
Let V be a set, $a \in V$ and $F: \mathbb{N} \times V \rightarrow V$. Then there is a unique function $G: \mathbb{N} \rightarrow V$ such that $G(0)=a$ and for every $n \in \mathbb{N}, G(n+1)=F(n, G(n))$. Proof If $n \in \mathbb{N}$ denote by $\mathbb{N}^{<n}$ the set $\{k \in \mathbb{N} \mid k<n\}$. Similarly, $\mathbb{N}^{\leq n}:=\{k \in \mathbb{N} \mid k \leq n\}$.

Let a, F be as in the theorem. A function g is called a good function, if there is $n \in \mathbb{N}$ such that $\operatorname{Dom}(g)=\mathbb{N}^{\leq n}, g(0)=a$ and for every $k \in \mathbb{N}^{<n}$, $g(k+1)=F(k, g(k))$.

Claim 1 For every $n \in \mathbb{N}$ there is a good function g such that $\operatorname{Dom}(g)=\mathbb{N} \leq n$. Proof By induction. Let g be the function $\{\langle 0, a\rangle\}$. Then g is good and $\operatorname{Dom}(g)=\mathbb{N}^{\leq 0}$.

Suppose that the induction hypothesis is true for n. Let g be a good function such that $\operatorname{Dom}(g)=\mathbb{N} \leq n$. Define $h=g \cup\{\langle n+1, F(n, g(n))\rangle\}$. It is left to the reader to check that h is a good function and that $\operatorname{Dom}(h)=\mathbb{N}^{\leq n+1}$. This proves Claim 1 .

Claim 2 Suppose that $m, n \in \mathbb{N}$ and $m \leq n$. Suppose further that g, h are good functions, $\operatorname{Dom}(g)=\mathbb{N}^{\leq m}$ and $\operatorname{Dom}(h)=\mathbb{N}^{\leq n}$. Then $h \upharpoonright \mathbb{N}^{\leq m}=g$. Proof Let X be the set of all natural numbers m which have the following property.

If g is a good function, $\operatorname{Dom}(g)=\mathbb{N}^{\leq m}, n \geq m$ and h is a good function such that $\operatorname{Dom}(h)=\mathbb{N}^{\leq n}$, then $h \upharpoonright \mathbb{N}^{\leq m}=g$.

We prove that $X=\mathbb{N}$.
(1) $0 \in X$. Let g be a good function such that $\operatorname{Dom}(g)=\mathbb{N}^{\leq 0}$. Then $g=\{\langle 0, a\rangle\}$. Let $n \geq 0$ and h be a good function such that $\operatorname{Dom}(h)=\mathbb{N} \leq n$. Then by the definition of goodness $h(0)=a$. So $h \upharpoonright \mathbb{N}^{\leq 0}=g$. So $0 \in X$.
(2) Suppose that $m \in X$ and we prove that $m+1 \in X$. Let g be a good function, $\operatorname{Dom}(g)=\mathbb{N} \leq m+1, n \geq m+1$ and h be a good function such that $\operatorname{Dom}(h)=\mathbb{N} \leq n$.

By Claim 1, there is good function g_{0} such that $\operatorname{Dom}\left(g_{0}\right)=\mathbb{N} \leq m$. Then by the induction hypothesis $g \upharpoonright \mathbb{N}^{\leq m}=g_{0}$ and $h \upharpoonright \mathbb{N}^{\leq m}=g_{0}$. In particular, $g(m)=g_{0}(m)$ and $h(m)=g_{0}(m)$. So

$$
g(m+1)=F(m, g(m))=F\left(m, g_{0}(m)\right)
$$

and

$$
h(m+1)=F(m, h(m))=F\left(m, g_{0}(m)\right) .
$$

Hence $h(m+1)=g(m+1)$.
For every $i \leq m, h(i)=g_{0}(i)=g(i)$. Altogether we have that for every $i \leq m+1$ For every $i \leq m, h(i)=g_{0}(i)=g(i)$. So $h \upharpoonright \mathbb{N}^{\leq m+1}=g$. This implies that $m+1 \in X$.

By the Induction Theorem, $X=\mathbb{N}$. This implies Claim 2.
We now prove that there is a function G as required in the theorem. Let \mathcal{G} be the set of good functions and $G=\bigcup \mathcal{G}$.
(i) G is a function. Suppose that $\langle i, b\rangle,\langle i, c\rangle \in G$. There are good functions g and h such that $\langle i, b\rangle \in g$ and $\langle i, c\rangle \in h$. There are $m, n \in \mathbb{N}$ such that $\operatorname{Dom}(g)=\mathbb{N} \leq m$ and $\operatorname{Dom}(h)=\mathbb{N} \leq n$. Without loss of generality, $m \leq n$. By Claim 2, $g=h \upharpoonright \mathbb{N}^{\leq m}$. So $b=g(i)=h(i)=c$. That is, $b=c$. So G is a function.
(ii) $\operatorname{Dom}(G)=\mathbb{N}$. Let $i \in \mathbb{N}$. By Claim 1, there is $g \in \mathcal{G}$ such that $\operatorname{Dom}(g)=\mathbb{N}^{\leq i}$. So $i \in \operatorname{Dom}(g) \subseteq \operatorname{Dom}(G)$. Hence $\mathbb{N} \subseteq \operatorname{Dom}(G)$. It is also trivial that $\operatorname{Dom}(G) \subseteq \mathbb{N}$. So $\operatorname{Dom}(G)=\mathbb{N}$.
(iii) $G(0)=a$. We know by Claim 1 that $\mathcal{G} \neq \emptyset$. So let $g \in \mathcal{G}$. Then $G(0)=g(0)=a$.
(iv) For every $n \in \mathbb{N}, G(n+1)=F(n, G(n))$. Let $g \in \mathcal{G}$ be such that $\operatorname{Dom}(g)=\mathbb{N}^{\leq n+1}$. Then $G(n+1)=g(n+1)=F(n, g(n))=F(n, G(n))$.

Finally we prove that there is only one function satifying the requirements of the Theorem. Suppose that both G and H satisfy the requirements of the theorem, and we show that $G=H$. We prove by induction that for every $n \in \mathbb{N}, G(n)=H(n)$.
(i) $n=0$. Then $g(0)=a=H(0)$.
(ii) Suppose that the induction hypothesis is true for n. That is, $G(n)=$ $H(n)$. Then $G(n+1)=F(n, G(n))=F(n, H(n))=H(n+1)$.

We have shown that $G=H$.

