ON THE cd-INDEX AND γ-VECTOR OF S*-SHELLABLE CW-SPHERES

SATOSHI MURAI AND ERAN NEVO

Abstract. We show that the γ-vector of the order complex of any polytope is the f-vector of a balanced simplicial complex. This is done by proving this statement for a subclass of Stanley’s S-shellable spheres which includes all polytopes. The proof shows that certain parts of the cd-index, when specializing $c = 1$ and considering the resulted polynomial in d, are the f-polynomials of simplicial complexes that can be colored with “few” colors. We conjecture that the cd-index of a regular CW-sphere is itself the flag f-vector of a colored simplicial complex in a certain sense.

1. Introduction

Let P be an $(n-1)$-dimensional regular CW-sphere (that is, a regular CW-complex which is homeomorphic to an $(n-1)$-dimensional sphere). In face enumeration, one of the most important combinatorial invariants of P is the cd-index. The cd-index $\Phi_P(c,d)$ of P is a non-commutative polynomial in the variables c and d that encodes the flag f-vector of P. By the result of Stanley [St1] and Karu [Ka], it is known that the cd-index $\Phi_P(c,d)$ has non-negative integer coefficients. On the other hand, a characterization of the possible cd-indices for regular CW-spheres, or other related families, e.g Gorenstien* posets, is still beyond reach. In this paper we take a step in this direction and establish some non-trivial upper bounds, as we detail now.

If we substitute 1 for c in $\Phi_P(c,d)$, we obtain a polynomial of the form

$$\Phi_P(1,d) = \delta_0 + \delta_1 d + \cdots + \delta_{\lfloor \frac{n}{2} \rfloor} d^{\lfloor \frac{n}{2} \rfloor},$$

where $\lfloor \frac{n}{2} \rfloor$ is the integer part of $\frac{n}{2}$, such that each δ_i is a non-negative integer. In other words, δ_i is the sum of coefficients of monomials in $\Phi_P(c,d)$ for which d appears i times.

Let Δ be a (finite abstract) simplicial complex on the vertex set V. We say that Δ is k-colored if there is a map $c : V \to [k] = \{1, 2, \ldots, k\}$, called a k-coloring map of Δ, such that if $\{x, y\}$ is an edge of Δ then $c(x) \neq c(y)$. Let $f_i(\Delta)$ denote the number of elements $F \in \Delta$ having cardinality $i + 1$, where $f_{-1}(\Delta) = 1$. The main result of this paper is the following.

Theorem 1.1. Let P be an $(n-1)$-dimensional S*-shellable regular CW-sphere, and let $\Phi_P(1,d) = \delta_0 + \delta_1 d + \cdots + \delta_{\lfloor \frac{n}{2} \rfloor} d^{\lfloor \frac{n}{2} \rfloor}$. Then there exists an $\lfloor \frac{n}{2} \rfloor$-colored simplicial complex Δ such that

$$\delta_i = f_{i-1}(\Delta) \text{ for } i = 0, 1, \ldots, \lfloor \frac{n}{2} \rfloor.$$
The precise definition of the S^*-shellability is given in Section 2. The most important class of S^*-shellable CW-spheres are the boundary complexes of polytopes. By the Kruskal-Katona Theorem (see e.g. [St2, II, Theorem 2.1]), the above theorem gives certain upper bound on δ_i in terms of δ_{i-1}. Better upper bounds are given by Frankl-Füredi-Kalai theorem which characterizes the f-vectors of k-colored complexes [FFK].

The numbers $\delta_0, \delta_1, \delta_2, \ldots$ relate to the γ-vector (see Section 4 for the definition) of the barycentric subdivision (order complex) of P, namely the simplicial complex whose elements are the chains of nonempty cells in P ordered by inclusion. Indeed, as an application of Theorem 1.1 we prove the following.

Theorem 1.2. Let P be an $(n-1)$-dimensional S^*-shellable regular CW-sphere and let $sd(P)$ be the barycentric subdivision of P. Then there exists an $\lfloor \frac{n}{2} \rfloor$-colored simplicial complex Γ such that

$$\gamma_i(sd(P)) = f_{i-1}(\Gamma) \quad \text{for } i = 0, 1, \ldots, \lfloor \frac{n}{2} \rfloor.$$

 Recall that an $(n-1)$-dimensional simplicial complex is said to be balanced if it is n-colored. If P is the boundary complex of an arbitrary convex n-dimensional polytope, then $\delta_{\lfloor \frac{n}{2} \rfloor}(P) > 0$ and we conclude the following.

Corollary 1.3. Let P be the boundary complex of an n-dimensional polytope. Then the γ-vector of $sd(P)$ is the f-vector of a balanced simplicial complex.

The above corollary supports the conjecture of Nevo and Petersen [NP, Conjecture 6.3] which states that the γ-vector of a flag homology sphere is the f-vector of a balanced simplicial complex. This conjecture was verified for the barycentric subdivision of simplicial homology spheres (in this case all the cells are simplices) in [NPT].

It would be natural to ask if the above theorems hold for all regular CW-spheres (or more generally, Gorenstein* posets). We conjecture a stronger statement on the cd-index, see Conjecture 4.3.

This paper is organized as follows: in Section 2 we recall some known results on the cd-index and define S^*-shellability, in Section 3 we prove our main theorem, Theorem 1.1, in Section 4 we derive consequences for γ-vectors and present a conjecture on the cd-index, Conjecture 4.3.

2. cd-index of S^*-shellable CW-spheres

In this section we recall some known results on the cd-index.

Let P be a graded poset of rank $n+1$ with the minimal element $\hat{0}$ and the maximal element $\hat{1}$. Let ρ denote the rank function of P. For $S \subseteq [n] = \{1, 2, \ldots, n\}$, a chain $\hat{0} = \sigma_0 < \sigma_1 < \sigma_2 < \cdots < \sigma_{k+1} = \hat{1}$ of P is called an S-flag if $\{\rho(\sigma_1), \ldots, \rho(\sigma_k)\} = S$. Let $f_S(P)$ be the number of S-flags of P. Define $h_S(P)$ by

$$h_S(P) = \sum_{T \subseteq S} (-1)^{|S| - |T|} f_T(P),$$

where $|X|$ denotes the cardinality of a finite set X. The vectors $(f_S(P) : S \subseteq [n])$ and $(h_S(P) : S \subseteq [n])$ are called the flag f-vector and flag h-vector of P respectively.
Now we recall the definition of the cd-index. For $S \subset [n]$, we define a non-commutative monomial $u_S = u_1u_2 \cdots u_n$ in variables a and b by $u_i = a$ if $i \notin S$ and $u_i = b$ if $i \in S$. Let

$$\Psi_P(a, b) = \sum_{S \subset [n]} h_P(S)u_S.$$

For a graded poset P, let $sd(P)$ be the order complex of $P - \{\emptyset, \hat{1}\}$. Thus

$$sd(P) = \{\{\sigma_1, \sigma_2, \ldots, \sigma_k\} \subset P - \{\emptyset, \hat{1}\} : \sigma_1 < \sigma_2 < \cdots < \sigma_k\}.$$

We say that P is Gorenstein* if the simplicial complex $sd(P)$ is a homology sphere. It is known that if P is Gorenstein* then $\Psi_P(a, b)$ can be written as a polynomial $\Phi_P(c, d)$ in $c = a + b$ and $d = ab + ba$ [BK], and this non-commutative polynomial $\Phi_P(c, d)$ is called the cd-index of P. Moreover, by the celebrated results due to Stanley [St1] (for convex polytopes) and Karu [Ka] (for Gorenstein* posets), the coefficients of $\Phi_P(c, d)$ are non-negative integers.

Next, we define S*-shellability of regular CW-spheres by slightly modifying the definition of S-shellability introduced by Stanley [St1, Definition 2.1].

Let P be a regular CW-sphere (a regular CW-complex which is homeomorphic to a sphere) and $F(P)$ its face poset. Then the order complex of $F(P)$ is a triangulation of a sphere, so the poset $F(P) \cup \{0, \hat{1}\}$ is Gorenstein*. We define the cd-index of P by $\Phi_P(c, d) = \Phi_{F(P) \cup \{0, \hat{1}\}}(c, d)$. For any cell σ of P, we write $\bar{\sigma}$ for the closure of σ. For an $(n - 1)$-dimensional regular CW-sphere P, let ΣP be the suspension of P, in other words, ΣP is the n-dimensional regular CW-sphere obtained from P by attaching two n-dimensional cells τ_1 and τ_2 such that $\partial \tau_1 = \partial \tau_2 = P$. Also, for an $(n - 1)$-dimensional regular CW-ball P (a regular CW-complex which is homeomorphic to an $(n - 1)$-dimensional ball), let P' be the $(n - 1)$-dimensional regular CW-sphere which is obtained from P by adding an $(n - 1)$-dimensional cell τ so that $\partial \tau = \partial P$.

Definition 2.1. Let P be an $(n - 1)$-dimensional regular CW-sphere. We say that P is S*-shellable if either $P = \{\emptyset\}$ or there is an order $\sigma_1, \sigma_2, \ldots, \sigma_r$ of the facets of P such that the following conditions hold.

(a) $\partial \bar{\sigma}_1$ is S*-shellable.
(b) For $1 \leq i \leq r - 1$, let

$$\Omega_i = \bar{\sigma}_1 \cup \bar{\sigma}_2 \cup \cdots \cup \bar{\sigma}_i$$

and for $2 \leq i \leq r - 1$ let

$$\Gamma_i = [\partial \bar{\sigma}_i \backslash (\partial \bar{\sigma}_i \cap \Omega_{i-1})].$$

Then both Ω_i and Γ_i are regular CW-balls of dimension $(n - 1)$ and $(n - 2)$ respectively, and Γ_i' is S*-shellable with the first facet of the shelling being the facet which is not in Γ_i.

Remark 2.2. The difference between the above definition and Stanley’s S-shellability is that S-shellability only assume that P and Γ_i' are Eulerian and assume no conditions on Ω_i. However, S*-shellable regular CW-spheres are S-shellable, and the boundary complex of convex polytopes are S*-shellable by the line shelling [BM]. We leave the verification of this fact to the readers.
The next recursive formula is due to Stanley [St1].

Lemma 2.3 (Stanley). With the same notation as in Definition 2.1 for \(i = 1, 2, \ldots, r - 2 \), one has

\[
\Phi_{i+1}^j(c, d) = \Phi_i^j(c, d) + \left\{ \Phi_{i+1}^j(c, d) - \Phi_{\partial_i^j(\partial_i^j \Pi^j)}(c, d) \right\} c + \Phi_{\partial_i^j}(c, d)d.
\]

Since \(\Pi^j_{i-1} = P \) the above formula gives a way to compute the \(cd \)-index of \(P \) recursively.

Next, we recall a result of Ehrenborg and Karu proving that the \(cd \)-index increases by taking subdivisions. Let \(P \) and \(Q \) be regular CW-complexes, and let \(\phi : F(P) \rightarrow F(Q) \) be a poset map. For a subcomplex \(Q' = \sigma_1 \cup \cdots \cup \sigma_s \subset Q \), where each \(\sigma_i \) is a cell of \(Q \), we write \(\phi^{-1}(Q') = \phi^{-1}(\sigma_1) \cup \cdots \cup \phi^{-1}(\sigma_s) \).

Following [EK, Definition 2.6], for \((n-1)\)-dimensional regular CW-spheres \(P \) and \(\hat{P} \), we say that \(\hat{P} \) is a subdivision of \(P \) if there is an order preserving surjective poset map \(\phi : F(\hat{P}) \rightarrow F(P) \), satisfying that for any cell \(\sigma \) of \(P \), \(\phi^{-1}(\sigma) \) is a homology ball having the same dimension as \(\sigma \) and \(\partial \phi^{-1}(\partial \sigma) = \partial(\phi^{-1}(\partial \sigma)) \).

The following result was proved in [EK, Theorem 1.5].

Lemma 2.4 (Ehrenborg-Karu). Let \(P \) and \(\hat{P} \) be \((n-1)\)-dimensional regular CW-spheres. If \(\hat{P} \) is a subdivision of \(P \) then one has a coefficientwise inequality \(\Phi_{\hat{P}}(c, d) \geq \Phi_{P}(c, d) \)

Back to \(S^* \)-shellable regular CW-spheres, with the same notation as in Definition 2.1 \(\Omega_i^j \) is a subdivision of \(\Sigma(\partial \Omega_i) \) and \(\partial \Omega_i \) is a subdivision of \(\Sigma(\partial \Gamma_{i+1}) \). Indeed, for the first statement, if \(\tau_1 \) and \(\tau_2 \) are the facets of \(\Sigma(\partial \Omega_i) \) then define \(\phi : F(\Omega_i^j) \rightarrow F(\Sigma(\partial \Omega_i)) \) by

\[
\phi(\sigma) = \begin{cases}
\sigma, & \text{if } \sigma \in \partial \Omega_i, \\
\tau_1, & \text{if } \sigma \text{ is an interior face of } \Omega_i, \\
\tau_2, & \text{if } \sigma \notin \Omega_i.
\end{cases}
\]

Similarly, for the second statement, if \(\tau_1 \) and \(\tau_2 \) are the facets of \(\Sigma(\partial \Gamma_{i+1}) \) then define \(\phi : F(\partial \Omega_i) \rightarrow F(\Sigma(\partial \Gamma_{i+1})) \) by

\[
\phi(\sigma) = \begin{cases}
\sigma, & \text{if } \sigma \in \partial \Gamma_{i+1}, \\
\tau_1, & \text{if } \sigma \in \partial_i^j \Gamma_{i+1}, \\
\tau_2, & \text{otherwise}.
\end{cases}
\]

Since \(\Phi_{\Sigma P}(c, d) = \Phi_P(c, d)c \) for any regular CW-sphere \(P \) (see [St1, Lemma 1.1]), Lemma 2.4 shows

Lemma 2.5. With the same notation as in Definition 2.1 for \(i = 2, 3, \ldots, r - 2 \), one has \(\Phi_{i+1}(c, d) \geq \Phi_{\partial_i^j}(c, d)c^2 \).

3. PROOF OF THE MAIN THEOREM

In this section, we prove Theorem 1.1. For a homogeneous \(cd \)-polynomial \(\Phi \) (i.e., homogeneous polynomial of \(\mathbb{Z}(c, d) \) with \(\deg c = 1 \) and \(\deg d = 2 \)) of degree \(n \), we define \(\Phi_0, \Phi_2, \ldots, \Phi_n \) by

\[
\Phi = \Phi_0 + \Phi_2 dc^{n-2} + \Phi_3 dc^{n-3} + \cdots + \Phi_{n-1} dc + \Phi_n d.
\]
where $\Phi_0 = \alpha c^n$ for some $\alpha \in \mathbb{Z}$ and each Φ_k is a cd-polynomial of degree $k - 2$ for $k \geq 2$. Also, we write $\Phi_{\leq k} = \Phi_0 + \Phi_2 dc^{n-2} + \cdots + \Phi_k dc^{n-k}$.

Definition 3.1.

- A vector $(\delta_0, \delta_1, \ldots, \delta_s) \in \mathbb{Z}^{s+1}$ is said to be k-FFK if there is a k-colored simplicial complex Δ such that $\delta_i = f_{i-1}(\Delta)$ for $i = 0, 1, \ldots, s$. \{\emptyset\} is a 0-colored simplicial complex. A homogeneous cd-polynomial $\Phi = \Phi(c, d)$ is said to be k-FFK if, when we write $\Phi(1, d) = \delta_0 + \delta_1 d + \cdots + \delta_s d^s$, the vector $(\delta_0, \delta_1, \ldots, \delta_s)$ is k-FFK.
- A homogeneous cd-polynomial Φ of degree n is said to be primitive if the coefficient of c^n in Φ is 1.
- Let Φ be a homogeneous cd-polynomial. A primitive homogeneous cd-polynomial Ψ is said to be k-good for Φ if Ψ is k-FFK and $\Phi(1, d) \geq \Psi(1, d)$. Also, we say that a homogeneous cd-polynomial Ψ is k-good for Φ if it is the sum of primitive homogeneous cd-polynomials that are k-good for Φ.

We will use the following observation, which follows from [NPT, Lemma 3.1]:

Lemma 3.2. If Φ is a k-FFK homogeneous cd-polynomial of degree n, and if Ψ' and Ψ'' are homogeneous cd-polynomials of degree n' and n'' respectively, where $n', n'' \leq n - 2$, which are k-good for Φ then

$$\Phi + \Psi' dc^{n-n'-2} \text{ and } \Phi + \Psi' dc^{n-n'-2} + \Psi'' dc^{n-n''-2}$$

are $(k + 1)$-FFK.

Proof. By Frankl-Füredi-Kalai theorem [FFK], for any k-colored simplicial complex Γ, there is the unique k-colored simplicial complex $C(\Gamma)$, called a k-colored compressed complex, such that $f_i(\Gamma) = f_i(C(\Gamma))$ for all i. Moreover, if Γ' is a k-colored complex satisfying $f_i(\Gamma') \leq f_i(C(\Gamma))$ for all i, then one has $C(\Gamma') \subset C(\Gamma)$.

For a simplicial complex Γ, we write $f(\Gamma, d) = 1 + f_0(\Gamma) d + f_1(\Gamma) d^2 + \cdots$. There are k-colored complexes $\Delta, \Delta^{(1)}, \ldots, \Delta^{(m)}, \ldots, \Delta^{(s)}$ such that $f(\Delta, d) = \Phi(1, d), \sum_{1 \leq i \leq m} f(\Delta^{(i)}, d) = \Psi'(1, d), \sum_{m+1 \leq i \leq s} f(\Delta^{(i)}, d) = \Psi''(1, d)$ and each $\Delta^{(i)}$ is a subcomplex of Δ. Let

$$\Gamma^{(i)} = \Delta \bigcup \left\{ \bigcup_{k=1}^{i} \left\{ F \cup \{v_k\} : F \in \Delta^{(k)} \right\} \right\},$$

where v_1, \ldots, v_s are new vertices. Since each $\Delta^{(k)}$ is a subcomplex of Δ, $\Gamma^{(i)}$ is a simplicial complex. Also, $f(\Gamma^{(m)}, d) = (\Phi + \Psi' dc^{n-n'-2})(1, d)$ and $f(\Gamma^{(s)}, d) = (\Phi + \Psi' dc^{n-n'-2} + \Psi'' dc^{n-n''-2})(1, d)$. We claim that each $\Gamma^{(i)}$ is $(k + 1)$-colored. Let V be the vertex set of Δ and $c : V \to [k]$ a k-coloring map of Δ. Then the map $\hat{c} : V \cup \{v_1, \ldots, v_s\} \to [k + 1]$ defined by $\hat{c}(x) = c(x)$ if $x \in V$ and $\hat{c}(x) = k + 1$ if $x \notin V$ is a $(k + 1)$-coloring map of $\Gamma^{(i)}$. \hfill \square

Let P be an $(n - 1)$-dimensional S^*-shellable regular CW-sphere with the shelling $\sigma_1, \ldots, \sigma_r$. Keeping the notation in Definition 2.1 to simplify notations, we use the
following symbols.

\[
\Phi^{(i)} = \Phi^{(i)}(c, d) = \Phi_{\Omega_1}(c, d) \\
\Phi = \Phi_{\Gamma}(c, d) = \Phi^{(r-1)} \\
\Psi^{(i)} = \Phi_{\Gamma_{i+1}}(c, d) - \Phi_{\Sigma(\partial \Gamma_{i+1})}(c, d) \\
\Psi = \sum_{i=1}^{r-2} \Psi^{(i)} \\
\Pi = \Phi - \Phi^{(1)}.
\]

Thus Stanley’s recursive formula, Lemma 2.3, says

\[
\Phi^{(i+1)} = \Phi^{(i)} + \Psi^{(i)} c + \Phi_{\partial \Gamma_{i+1}} d
\]

and

\[
\Pi = \Psi c + \sum_{i=1}^{r-2} \Phi_{\partial \Gamma_{i+1}}(c, d)d.
\]

The last part of the following proposition is a restatement of Theorem 1.1.

Proposition 3.3. With notation as above, the following holds.

1. For \(2 \leq k \leq n\), \(\Psi_k^{(i)}\) is \(\lfloor \frac{k}{2} - 1 \rfloor\)-good for \(\Phi_{\leq k-2}^{(i)} + \Psi_{\leq k-2}^{(i)} c\).
2. For \(2 \leq k \leq n\), \(\Pi_k = \lfloor \frac{k}{2} - 1 \rfloor\)-good for \(\Phi_{\leq k-2}^{(i)} + \Pi_{\leq k-2}\).
3. For \(2 \leq k \leq n\), \(\Phi_{\leq k}\) is \(\lfloor \frac{k}{2} - 1 \rfloor\)-good for \(\Phi_{\leq k-2}\).
4. For \(0 \leq k \leq n\), \(\Phi_{\leq k}\) is \(\lfloor \frac{k}{2} \rfloor\)-FFK. In particular, the \(cd\)-index of \(P\) is \(\lfloor \frac{n}{2} \rfloor\)-FFK.

Proof. The proof is by induction on dimension, where all statements clearly hold for \(n = 0, 1\). Suppose that all statements are true up to dimension \(n - 2\). To simplify notations, for a regular CW-sphere \(Q\), we write \(\Phi_Q = \Phi_Q(c, d)\).

Proof of (1). By applying the induction hypothesis to \(\Gamma_{i+1}'\) (use statement (2)), each \(\Psi_k^{(i)}\) is \(\lfloor \frac{k}{2} - 1 \rfloor\)-good for \(\Phi_{\Sigma(\partial \Gamma_{i+1})}^{(i)} \leq k-2 + \Psi_{\leq k-2}^{(i)} c\). Since \((\Sigma c)_k = \Sigma c_k\) for any homogeneous \(cd\)-polynomial \(\Sigma\), \(\Psi_k^{(i)}\) is \(\lfloor \frac{k}{2} - 1 \rfloor\)-good for \(\Phi_{\Sigma(\partial \Gamma_{i+1})}^{(i)} \leq k-2 c + \Psi_{\leq k-2}^{(i)} c\).

By Lemma 2.5,

\[
\Phi_{\Sigma(\partial \Gamma_{i+1})} c = \Phi_{\partial \Gamma_{i+1}} c^2 \leq \Phi_{\Omega_1}^{(i)} = \Phi^{(i)},
\]

thus \(\Psi_k^{(i)}\) is \(\lfloor \frac{k}{2} - 1 \rfloor\)-good for \(\Phi_{\leq k-2}^{(i)} + \Psi_{\leq k-2}^{(i)} c\).

Proof of (2). By the definition of \(\Pi\),

\[
\Pi_k = \sum_{i=1}^{r-1} \Psi_k^{(i)} \text{ for } k < n
\]

and

\[
\Pi_n = \sum_{i=1}^{r-2} \Phi_{\partial \Gamma_{i+1}}.
\]

By (1), each \(\Psi_k^{(i)}\) is \(\lfloor \frac{k}{2} - 1 \rfloor\)-good for \(\Phi_{\leq k-2}^{(i)} + \Psi_{\leq k-2}^{(i)} c\). Then since

\[
\Phi_{\leq k-2}^{(i)} + \Psi_{\leq k-2}^{(i)} c \leq \Phi_{\leq k-2}^{(1)} + \Pi_{\leq k-2},
\]

...
Π_k is \([k/2 - 1]\)-good for \(\Phi_{\leq k - 2}^{(1)} + \Pi_{\leq k - 2}\) for \(k < n\). Also, each \(\Phi_{\partial i + 1}\) is \([n/2 - 1]\)-FFK by the induction hypothesis (use (4)), and \(\Phi_{\partial i + 1} \leq \Phi^{(i)}\) by Lemma 2.5. The latter condition clearly says
\[
\Phi_{\partial i + 1} c^2 \leq \Phi_{\leq n - 2}^{(i)} \leq \Phi_{\leq n - 2} = \Phi_{\leq n - 2} + \Pi_{\leq n - 2}.
\]
Hence \(\Pi_n\) is \([n/2 - 1]\)-good for \(\Phi_{\leq n - 2} + \Pi_{\leq n - 2}\).

Proof of (3). Observe that since \(\Phi^{(1)} = \Phi_{\partial 1} c\),
\[
\Phi_k = \Phi_k^{(1)} + \Psi_k \quad \text{for} \quad k < n
\]
and
\[
\Phi_n = \Pi_n.
\]
We already proved that \(\Phi_n = \Pi_n\) is \([n/2 - 1]\)-good for \(\Phi_{\leq n - 2}\) in the proof of (2).

Suppose \(k < n\). Since \(\Phi^{(1)} = \Phi_{\partial 1} c\), by the induction hypothesis (use (3)), \(\Phi^{(1)}\) is \([k/2 - 1]\)-good for \(\Phi_{k - 2}^{(1)}\). Since \(\Phi_{\leq k - 2}^{(1)} \leq \Phi_{\leq k - 2}\) and since we already proved that \(\Psi_k = \Pi_k\) is \([k/2 - 1]\)-good for \(\Phi_{\leq k - 2}\) in the proof of (2), \(\Phi_k\) is \([k/2 - 1]\)-good for \(\Phi_{\leq k - 2}\).

Proof of (4). This statement easily follows from (3). For \(k = 0, 1\), the statement is obvious (as \(\Phi_{\leq 0} = \Phi_{\leq 1} = c^n\)). Suppose that \(\Phi_{\leq 2m + 1}\) is \(m\)-FFK, where \(m \in \mathbb{Z}_{\geq 0}\). Then both \(\Phi_{2m + 2}\) and \(\Phi_{2m + 3}\) are \(m\)-good for \(\Phi_{\leq 2m + 1}\) by (3), and therefore \(\Phi_{\leq 2m + 2}\) and \(\Phi_{\leq 2m + 3}\) are \((m + 1)\)-FFK by Lemma 3.2.

4. \(\gamma\)-vectors of polytopes and a conjecture on the \(cd\)-index

\(\gamma\)-vectors and the \(cd\)-index. Let \(\Delta\) be an \((n - 1)\)-dimensional simplicial complex. Then the \(h\)-vector \(h(\Delta) = (h_0, h_1, \ldots, h_n)\) of \(\Delta\) is defined by the relation
\[
\sum_{i=0}^{n} h_i x^{n-i} = \sum_{i=0}^{n} f_{i-1}(\Delta)(x-1)^{n-i}.
\]
If \(\Delta\) is a homology sphere (that is, a triangulation of a sphere), or more generally a \(h\)-vector of \(\Delta\) is defined by the relation
\[
\sum_{i=0}^{n} h_i x^{i} = \sum_{i=0}^{\lfloor n/2 \rfloor} \gamma_i x^{i}(1 + x)^{n-2i}.
\]
It was conjectured by Gal [Ga] that if \(\Delta\) is a flag homology sphere then its \(\gamma\)-vector is non-negative. Recently Nevo and Peterson [NP] further conjectured that the \(\gamma\)-vector of a flag homology sphere is the \(f\)-vector of a balanced simplicial complex. These conjectures are open in general, the latter conjecture was verified for barycentric subdivisions of simplicial homology spheres [NPT], and Gal’s conjecture is known to be true for barycentric subdivisions of regular CW-spheres by the following fact, combined with Karu’s result on the nonnegativity of the \(cd\)-index for Gorenstein* posets:

Let \(P\) be an \((n - 1)\)-dimensional regular CW-sphere. The \textit{barycentric subdivision} \(sd(P)\) of \(P\) is the order complex of \(F(P)\). Let \((h_0, h_1, \ldots, h_n)\) and \((\gamma_0, \gamma_1, \ldots, \gamma_{\lfloor n/2 \rfloor})\) be the \(h\)-vector and \(\gamma\)-vector of \(sd(P)\), respectively. Then it is easy to see that
Let w be a homogeneous cd-polynomial of degree n (where $0 \leq s_i$ for all i and $s_0 + \ldots + s_k + 2k = n$), let F_w be the following subset of $[n - 1]$:

$$F_w = \{s_0 + 1, s_0 + s_1 + 3, s_0 + s_1 + s_2 + 5, \ldots, s_0 + \cdots + s_k - 1 + 2k - 1\}.$$

Note that F_w contains no two consecutive numbers. For example, $F_{c^0} = \emptyset$, $F_{d^k} = \{1, 3, \ldots, 2k - 1\}$ and $F_{cd^k} = \{2, 4, \ldots, 2k\}$. Let \mathcal{A} be the set of subsets of $[n - 1]$ that have no two consecutive numbers, and let \mathcal{B} be the set of cd-monomials of degree n. Then $w \mapsto F_w$ is a bijection from \mathcal{B} to \mathcal{A} (as $k = |F_w|$ and $s_k = n - 2k - s_k - 1 - \cdots - s_0$ we see that the inverse map exists).

Let Δ be a k-colored simplicial complex with the vertex set V and a k-coloring map $c : V \to [k]$. For any subset $S \subset [k]$, let $f_S(\Delta) = |\{F \in \Delta : c(F) = S\}|$. The vector $(f_S(\Delta) : S \subset [k])$ is called the flag f-vector of Δ. Note that the flag f-vector of a Gorenstein* poset P is equal to the flag f-vector of $sd(P)$ by the coloring map defined by the rank function.

Definition 4.2. Let $\Phi = \sum_w a_w w$ be a homogeneous cd-polynomial of degree n with w the cd-monomials and $a_w \in \mathbb{Z}$. For $S \subset [n - 1]$, we define

$$\alpha_S(\Phi) = \begin{cases} a_w, & \text{if } S = F_w \text{ for some } w \in \mathcal{B} \\ 0, & \text{if } S \notin \mathcal{A}. \end{cases}$$
Conjecture 4.3. Let P be an $(n - 1)$-dimensional regular CW-sphere (or more generally, Gorenstein* poset of rank $n + 1$). Then there exists an $(n - 1)$-colored simplicial complex Δ such that $f_S(\Delta) = \alpha_S(\Phi_P)$ for all $S \subset [n - 1]$.

Thus the above conjecture states that the cd-index is itself the flag f-vector of a colored complex. If the above conjecture is true then $\Phi_P(1, d) = 1 + f_0(\Delta)d + \cdots + f_{\left\lfloor \frac{n}{2} \right\rfloor - 1}(\Delta)d^{\left\lfloor \frac{n}{2} \right\rfloor}$. Although Δ is $(n - 1)$-colored, this fact implies Theorem 1.1.

Indeed, since $f_S(\Delta) = \alpha_S(\Phi_P) = 0$ if S has consecutive numbers, if $c : V \to [n - 1]$ is an $(n - 1)$-coloring map of Δ then the map $\hat{c} : V \to [\left\lfloor \frac{n}{2} \right\rfloor]$ defined by $\hat{c}(v) = \left\lfloor \frac{c(v) + 1}{2} \right\rfloor$ is an $\left\lfloor \frac{n}{2} \right\rfloor$-coloring map of Δ.

The next result supports the conjecture in low dimension.

Proposition 4.4. Let P be a Gorenstein* poset of rank $n + 1$. For all $i, j \in [n - 1]$,
$$\alpha_{\{i\}}(\Phi_P)\alpha_{\{j\}}(\Phi_P) \geq \alpha_{\{i, j\}}(\Phi_P).$$

Proof. Let $(h_S(P) : S \subset [n])$ be the flag h-vector of P. Let $\{i, i + j\} \subset [n - 1]$ with $j \geq 2$. What we must prove is $\alpha_{\{i\}}(\Phi_P)\alpha_{\{i, j\}}(\Phi_P) \geq \alpha_{\{i, i + j\}}(\Phi_P)$.

Observe that
$$h_{[i, i+j+1, \ldots, n]}(P) = \alpha_{\{i, i+j\}}(\Phi_P) + \alpha_{\{i\}}(\Phi_P) + \alpha_{\{i, j\}}(\Phi_P) + \alpha_{\emptyset}(\Phi_P),$$
$$h_{[i]}(P) = \alpha_{\{i\}}(\Phi_P) + \alpha_{\emptyset}(\Phi_P),$$
$$h_{[i, i+j+1, \ldots, n]}(P) = \alpha_{\{i, j\}}(\Phi_P) + \alpha_{\emptyset}(\Phi_P),$$
(as $h_{[i]}(P)$ is the coefficient of b_i^a in $\Psi_P(a, b)$, etc.). Since $\alpha_{\emptyset} = 1$, it is enough to prove that
$$h_{[i]}(P)h_{[i, i+j+1, \ldots, n]}(P) \geq h_{[n-i-j], [n-i+1, \ldots, n]}(P).$$

It follows from [St2, III, Theorem 4.6] that there is an n-colored simplicial complex Δ with a coloring map $c : V \to [n]$ such that $f_S(\Delta) = h_S(P)$ for all $S \subset [n]$. Let
$$\Delta_S = \{F \in \Delta : c(F) = S\}$$
for $S \subset [n]$. Then it is clear that
$$\Delta_{[i]} \cup \Delta_{[i+j+1, \ldots, n]} \subset \{F \cup G : F \in \Delta_{[i]}, G \in \Delta_{[i+j+1, \ldots, n]}\},$$
which implies the desired inequality.

It is straightforward that the above proposition proves the next statement.

Corollary 4.5. Conjecture 4.3 holds for $n \leq 5$.

Non-existence of d-polynomials. For a Gorenstein* poset P, we call $\Phi_P(1, d)$ the d-polynomial of P. It is a challenging problem to classify all possible d-polynomials of Gorenstein* posets, which give a complete characterization of all possible face vectors of Gorenstein* order complexes since knowing the d-polynomials is equivalent to knowing the γ-vectors. The problem is open even for the 3-dimensional case. To study this problem, by virtue of Theorem 1.1 it is natural to ask which FFK vector is realizable as the d-polynomial of a Gorenstein* poset. The next result shows that not all $\left\lfloor \frac{n}{2} \right\rfloor$-FFK vectors are realizable as the d-polynomial of a Gorenstein* poset of rank $n + 1$.

First recall that the ordinal sum $Q_1 + Q_2$ of two disjoint posets Q_1 and Q_2 is the poset whose elements are the union of elements in Q_1 and Q_2 and whose relations
are those in Q_1 union those in Q_2 union all $q_1 < q_2$ where $q_1 \in Q_1$ and $q_2 \in Q_2$.

For Gorenstein* posets Q_1 and Q_2, the poset $Q_1 \ast Q_2 = (Q_1 - \{1\}) + (Q_2 - \{0\})$ is called the join of Q_1 and Q_2, and $\Sigma Q_1 = Q_1 \ast B_2$, where B_2 is a Boolean algebra of rank 2, is called the suspension of Q_1. By [11], $\Phi_{Q_1 \ast Q_2}(c, d) = \Phi_{Q_1}(c, d) \cdot \Phi_{Q_2}(c, d)$.

Proposition 4.6. Let P be a Gorenstein* poset of rank 5, and let

$$\Phi_P(c, d) = c^4 + \alpha_{\{1\}}c^2d + \alpha_{\{2\}}cdc + \alpha_{\{3\}}dc^2 + \alpha_{\{1,3\}}d^2$$

be its cd-index. Suppose $\alpha_{\{2\}} = 0$. Then there are Gorenstein* posets P_1 and P_2 of rank 3 such that $P = P_1 \ast P_2$. In particular, $\alpha_{\{1,3\}} = \alpha_{\{1\}}\alpha_{\{3\}}$.

Proof. Let r denote the rank function $r : P \to \{0, 1, \ldots, 5\}$ ($r(\emptyset) = 0$, $r(\hat{1}) = 5$). Let $P_1 := \{ F \in P : r(F) \leq 2 \}$ and $P_2 := \{ F \in P : r(F) \geq 3 \}$.

As P is Gorenstein*, to show that $P = P_1 \cup P_2$ it is enough to show that $P_2 \cup \{\emptyset\}$ is Gorenstein* (as a Gorenstein* poset contains no proper subposet which is Gorenstein* of the same rank, and each interval $[F, \hat{1}]$ with $r(F) = 2$ in P is Gorenstein*). For this, it is enough to show that any rank 4 element in P covers exactly two rank 3 elements in P. Indeed, this guarantees that the dual poset to P_2, denoted P_2^*, is the face poset of a union of CW 1-spheres, and as P is Gorenstein* so is its dual P^*, hence P_2^* is Cohen-Macaulay since P_2^* is a rank selected poset [St2] III, Theorem 4.5, which implies that P_2^* is the face poset of one CW 1-sphere, i.e. $P_2 \cup \{\emptyset\}$ is Gorenstein*.

Let F be a rank 4 element of P. Then P is a subdivision of $\Sigma(\emptyset, F)$ (Recalling [EK] Definition 2.6), this is shown by the map $\phi : P \to \Sigma(\emptyset, F)$, $\phi(\sigma) = \sigma$ if $\sigma < F$, $\phi(\sigma) = \sigma_1$ if σ and F are incomparable, and $\phi(\sigma) = \sigma_2$, where σ_1, σ_2 are the rank 4 elements in $\Sigma(\emptyset, F)$. Thus, by Lemma 2.4, the coefficient of cdc in the cd-index of $\Sigma(\emptyset, F)$ is zero, hence the coefficient of the monomial cd in the cd-index of $\emptyset, F)$ is zero.

This fact implies, when expanding the cd-index of $\emptyset, F)$ in terms of a, b, that $h_{[3]}(\emptyset, F)$ equals the coefficient of c^3, namely $h_{[3]}(\emptyset, F) = 1$. Switching to the flag f-vector of $\emptyset, F)$ we get $f_{[3]}(\emptyset, F') = h_{[3]}(\emptyset, F') + h_{[3]}(\emptyset, F) = 1 + 1 = 2$. Thus, F covers exactly two rank 3 elements in P. \hfill \Box

Example 4.7. Consider the 2-FFK vector $(1, 6, 7)$. We claim that $\Phi_P(1, d) \neq 1 + 6d + 7d^2$ for all Gorenstein* poset P of rank 5. Indeed, if $\Phi_P(1, d) = 1 + 6d + 7d^2$, then $\alpha_{\{1,3\}} = 7$. Then $\alpha_{\{1\}} + \alpha_{\{3\}} = 6$ and $\alpha_{\{2\}} = 0$ by Proposition 4.4 which contradicts Proposition 4.6.

A similar argument shows that $(1, 2a, a^2 - 2)$, where $a \geq 3$, is 2-FFK, but not realizable as the d-polynomial of a Gorenstein* poset of rank 5.

References

Satoshi Murai, Department of Mathematical Science, Faculty of Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8512, Japan

Department of Mathematics, Ben Gurion University of the Negev, Be’er Sheva 84105, Israel

E-mail address: nevoe@math.bgu.ac.il