Elementary Laplace Transforms		
$f(t) = L^{-1}{F(p)}$	$F(p) = L\{f(t)\}$	
1	$\frac{1}{p}$	p > 0 (1)
e ^{at}	$\frac{1}{p-a}$	p > a (2)
sin at	$\frac{a}{p^2 + a^2}$	p > 0 (3)
cos at	$\frac{p}{p^2+a^2}$	p > 0 (4)
t^n , $n \in N$	$\frac{n!}{p^{n+1}}$	p > 0 (5)
t^q , $q > -1$	$\frac{\Gamma(q+1)}{p^{q+1}}$	p > 0 (6)
sinh at	$\frac{a}{p^2 - a^2}$	p > a (7)
cosh at	$\frac{p}{p^2-a^2}$	p > a (8)
e ^{at} sin bt	$\frac{b}{(p-a)^2+b^2}$	p > a (9)
e ^{at} cos bt	$\frac{p-a}{(p-a)^2+b^2}$	<i>p</i> > <i>a</i> (10)
$t^n e^{at}$, $n \in N$	$\frac{n!}{(p-a)^{n+1}}$	p > a (11)
t sin at	$\frac{2pa}{(p^2+a^2)^2}$	p > 0 (12)
t cos at	$\frac{p^2 - a^2}{(p^2 + a^2)^2}$	p > 0 (13)
$\frac{\sin at - at \cos at}{2a^3}$	$\frac{1}{(p^2+a^2)^2}$	p > 0 (14)
$u_c(t)$	$\frac{e^{-cp}}{p}$	p > 0 (15)
$u_c(t) f(t-c)$	$e^{-cp}F(p)$	(16)
$e^{ct}f(t)$	F(p-c)	(17)
f(ct)	$\frac{1}{c}F\left(\frac{p}{c}\right)$	<i>c</i> > 0 (18)
$\int_0^t f_1(t-\tau)f_2(\tau)d\tau$	$F_1(p)F_2(p)$	(19)
$\delta(t-c)$	<i>e^{-cp}</i>	(20)
$(-t)^n f(t)$	$F^{(n)}(p)$	(21)
$f^{(n)}(t)$	$p^n F(p) - p^{n-1} f(0) - \cdots - f^{(n-1)}(0)$	(22)