Elementary Laplace Transforms

$\boldsymbol{f}(\boldsymbol{t})=\boldsymbol{L}^{-1}\{\boldsymbol{F}(\boldsymbol{p})\}$	$\boldsymbol{F}(\boldsymbol{p})=\boldsymbol{L}\{\boldsymbol{f}(\boldsymbol{t})\}$	
1	$\frac{1}{p}$	$p>0$ (1)
$e^{a t}$	$\frac{1}{p-a}$	$\boldsymbol{p}>a$
$\sin a t$	$\frac{a}{p^{2}+a^{2}}$	$\boldsymbol{p}>0$ (3)
cos at	$\frac{p}{p^{2}+a^{2}}$	$\boldsymbol{p}>0$ (4)
$t^{n}, \quad n \in N$	$\frac{n!}{p^{n+1}}$	$\boldsymbol{p}>0$
$t^{q}, \quad \boldsymbol{q}>-1$	$\frac{\Gamma(q+1)}{p^{q+1}}$	$\boldsymbol{p}>0$ (6)
$\sinh a t$	$\frac{a}{p^{2}-a^{2}}$	$p>\|a\|$ (7)
cosh at	$\frac{p}{p^{2}-a^{2}}$	$p>\|a\|$ (8)
$e^{a t} \sin b t$	$\frac{b}{(p-a)^{2}+b^{2}}$	p>a (9)
$e^{a t} \cos b t$	$\frac{p-a}{(p-a)^{2}+b^{2}}$	$p>a(10)$
$t^{n} e^{a t}, n \in N$	$\frac{n!}{(p-a)^{n+1}}$	$p>a(11)$
$t \sin a t$	$\frac{2 p a}{\left(p^{2}+a^{2}\right)^{2}}$	$p>0$ (12)
$\boldsymbol{t c o s} \boldsymbol{a t}$	$\frac{p^{2}-a^{2}}{\left(p^{2}+a^{2}\right)^{2}}$	$p>0$ (13)
$\frac{\sin a t-a t \cos a t}{2 a^{3}}$	$\frac{1}{\left(p^{2}+a^{2}\right)^{2}}$	$p>0$ (14)
$\boldsymbol{u}_{\boldsymbol{c}}(\boldsymbol{t})$	$\frac{e^{-c p}}{p}$	$p>0$ (15)
$u_{c}(t) f(t-c)$	$e^{-c p} F(p)$	(16)
$\boldsymbol{e}^{c t} \boldsymbol{f}(\boldsymbol{t})$	$\boldsymbol{F}(\boldsymbol{p}-\boldsymbol{c})$	(17)
$\boldsymbol{f}(\boldsymbol{c t})$	$\frac{1}{c} F\left(\frac{p}{c}\right)$	$c>0$ (18)
$\int_{0}^{t} f_{1}(t-\tau) f_{2}(\tau) d \tau$	$F_{1}(p) F_{2}(p)$	(19)
$\delta(t-c)$	$e^{-c p}$	(20)
$(-\boldsymbol{t})^{\boldsymbol{n}} \boldsymbol{f}(\boldsymbol{t})$	$F^{(n)}(\boldsymbol{p})$	(21)
$f^{(n)}(t)$	$p^{n} F(p)-p^{n-1} f(0)-\cdots-f^{(n-1)}(0)$	(22)

